OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 12 — Apr. 20, 2002
  • pp: 2251–2262

Space-bandwidth product enhancement of a monostatic, multiaperture infrared image upconversion ladar receiver incorporating periodically poled LiNbO3

Christopher D. Brewer, Bradley D. Duncan, Phillip S. Maciejewski, Sean M. Kirkpatrick, and Edward A. Watson  »View Author Affiliations


Applied Optics, Vol. 41, Issue 12, pp. 2251-2262 (2002)
http://dx.doi.org/10.1364/AO.41.002251


View Full Text Article

Enhanced HTML    Acrobat PDF (565 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the space-bandwidth product of a ladar system incorporating an upconversion receiver. After illuminating a target with an eye-safe beam, we direct the return into a piece of periodically poled LiNbO3 where it is upconverted into the visible spectrum and detected with a CCD camera. The theoretical and experimental transfer functions are then found. We show that the angular acceptance of the upconversion process severely limits the receiver field of regard for macroscopic coupling optics. This limitation is overcome with a pair of microlens arrays, and a 43% increase in the system’s measured space-bandwidth product is demonstrated.

© 2002 Optical Society of America

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(190.7220) Nonlinear optics : Upconversion
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: July 31, 2001
Revised Manuscript: December 5, 2001
Published: April 20, 2002

Citation
Christopher D. Brewer, Bradley D. Duncan, Phillip S. Maciejewski, Sean M. Kirkpatrick, and Edward A. Watson, "Space-bandwidth product enhancement of a monostatic, multiaperture infrared image upconversion ladar receiver incorporating periodically poled LiNbO3," Appl. Opt. 41, 2251-2262 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-12-2251


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. J. Dixon, “Periodically poled lithium niobate shines in the IR,” Laser Focus World 33, 105–111 (1997).
  2. M. J. Missey, V. Dominic, P. E. Powers, “Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators,” Opt. Lett. 24, 1227–1229 (1999). [CrossRef]
  3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, “Quasi-phase-matched optical parametric oscillators using bulk periodically poled lithium niobate,” J. Opt. Soc. Am. B 12, 2102–2116 (1995). [CrossRef]
  4. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, “Multigrating quasi-phase-matched optical parametric oscillators in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996). [CrossRef] [PubMed]
  5. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  6. M. S. Salisbury, P. F. McManamon, B. D. Duncan, “Sensitivity improvement of a 1 µm ladar system incorporating an optical fiber preamplifier,” Opt. Eng. 32, 2671–2680 (1993). [CrossRef]
  7. S. Ma, D. Guthals, P. Hu, B. Campbell, “Atmospheric-turbulence compensation with self-referenced binary holographic interferometry,” J. Opt. Soc. Am. A 11, 428–433 (1994). [CrossRef]
  8. E. A. Watson, G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990). [CrossRef]
  9. P. Gunter, Nonlinear Optical Effects and Materials (Springer-Verlag, Berlin, 2000). [CrossRef]
  10. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  11. A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1992).
  12. J. H. Shapiro, “Target-reflectivity theory for coherent laser radars,” Appl. Opt. 21, 3398–3408 (1982). [CrossRef] [PubMed]
  13. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997). [CrossRef]
  14. R. A. Andrews, “IR image parametric upconversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970). [CrossRef]
  15. A. H. Firester, “Image upconversion: part III,” J. Appl. Phys. 41, 703–709 (1970). [CrossRef]
  16. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978).
  17. J. A. Overbeck, M. B. Mark, S. H. McCracken, P. F. McManamon, B. D. Duncan, “Coherent versus incoherent ladar detection at 2.09 mm,” Opt. Eng. 32, 2681–2689 (1993). [CrossRef]
  18. M. Born, E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, New York, 1980).
  19. Handbook of Mathematical, Scientific, and Engineering Formulas, Tables, Functions, Graphs, and Transforms (Research and Education Association, Piscataway, N.J., 1992).
  20. F. G. Stremler, Introduction to Communication Systems, 3rd ed. (Addison-Wesley, Reading, Mass., 1992).
  21. M. S. Currin, R. G. Driggers, “Field-of-view overlap effects in a multiaperture vision system with apposition eyelets,” Appl. Opt. 36, 5775–5780 (1997). [CrossRef] [PubMed]
  22. J. E. Harvey, A. Kotha, R. L. Phillips, “Image characteristics in applications utilizing dilute subaperture arrays,” Appl. Opt. 34, 2983–2992 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited