OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 12 — Apr. 20, 2002
  • pp: 2274–2284

H2o absorption spectroscopy for determination of temperature and H2O mole fraction in high-temperature particle synthesis systems

Paul V. Torek, David L. Hall, Tiffany A. Miller, and Margaret S. Wooldridge  »View Author Affiliations


Applied Optics, Vol. 41, Issue 12, pp. 2274-2284 (2002)
http://dx.doi.org/10.1364/AO.41.002274


View Full Text Article

Enhanced HTML    Acrobat PDF (209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Water absorption spectroscopy has been successfully demonstrated as a sensitive and accurate means for in situ determination of temperature and H2O mole fraction in silica (SiO2) particle-forming flames. Frequency modulation of near-infrared emission from a semiconductor diode laser was used to obtain multiple line-shape profiles of H2O rovibrational (ν1 + ν3) transitions in the 7170–7185-cm-1 region. Temperature was determined by the relative peak height ratios, and χH2 O was determined by use of the line-shape profiles. Measurements were made in the multiphase regions of silane/hydrogen/oxygen/argon flames to verify the applicability of the diagnostic approach to combustion synthesis systems with high particle loadings. A range of equivalence ratios was studied (ϕ = 0.47–2.15). The results were compared with flames where no silane was present and with adiabatic equilibrium calculations. The spectroscopic results for temperature were in good agreement with thermocouple measurements, and the qualitative trends as a function of the equivalence ratio were in good agreement with the equilibrium predictions. The determinations for water mole fraction were in good agreement with theoretical predictions but were sensitive to the spectroscopic model parameters used to describe collisional broadening. Water absorption spectroscopy has substantial potential as a valuable and practical technology for both research and production combustion synthesis facilities.

© 2002 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(140.5960) Lasers and laser optics : Semiconductor lasers
(300.1030) Spectroscopy : Absorption
(300.6390) Spectroscopy : Spectroscopy, molecular

History
Original Manuscript: June 6, 2001
Revised Manuscript: October 23, 2001
Published: April 20, 2002

Citation
Paul V. Torek, David L. Hall, Tiffany A. Miller, and Margaret S. Wooldridge, "H2o absorption spectroscopy for determination of temperature and H2O mole fraction in high-temperature particle synthesis systems," Appl. Opt. 41, 2274-2284 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-12-2274


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. D. Ulrich, “Flame synthesis of fine particles,” Chem. Eng. News 62, 22–29 (1984). [CrossRef]
  2. S. E. Pratsinis, “Flame aerosol synthesis of ceramic powders,” Prog. Energy Combust. Sci. 24, 197–219 (1998). [CrossRef]
  3. K. Brezinsky, “Gas-phase combustion synthesis of materials,” Proc. Combust. Inst. 26, 1805–1816 (1996).
  4. M. S. Wooldridge, “Gas-phase combustion synthesis of particles,” Prog. Energy Combust. Sci. 24, 63–87 (1998). [CrossRef]
  5. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993). [CrossRef] [PubMed]
  6. M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993). [CrossRef] [PubMed]
  7. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996). [CrossRef] [PubMed]
  8. V. Nagali, R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997). [CrossRef]
  9. D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. J. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994). [CrossRef]
  10. E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, T. P. Parr, “Diode laser sensor system for closed-loop control of a 50-kW incinerator,” in Optical Technology in Fluid, Thermal, and Combustion Flow III, S. S. Cha, J. D. Trolinger, M. Kawahashi, eds., Proc. SPIE3172, 324–330 (1997). [CrossRef]
  11. E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode-laser sensor system,” Proc. Combust. Inst. 26, 2851–2858 (1997).
  12. R. K. Hanson, “Absorption spectroscopy in sooting flames using a tunable diode laser,” Appl. Opt. 19, 482–484 (1980). [CrossRef] [PubMed]
  13. P. Roth, O. Brandt, S. Von Gersum, “High temperature oxidation of suspended soot particles verified by CO and CO2 measurements,” in Proc. Combust. Inst. 23, 1485–1491 (1990).
  14. P. Roth, O. Brandt, “Shock tube measurements of soot oxidation rates by using a rapid tuning IR laser,” in Seventeenth International Symposium on Shock Waves and Shock Tubes, Y. W. Kim, ed. (American Institute of Physics, New York, 1990), pp. 506–511.
  15. W. L. Flower, A. J. Hurd, “In situ measurement of flame-formed silica particles using dynamic light scattering,” Appl. Opt. 26, 2236–2239 (1987). [CrossRef] [PubMed]
  16. HITRAN 96 Database, Digital Product Section, National Climatic Center, National Oceanic and Atmospheric Administration, Federal Building, Asheville, N.C. 28801.
  17. R. R. Gamache, J.-M. Hartmann, L. Rosenmann, “Collisional broadening of water vapor lines. I. A survey of experimental results,” J. Quant. Spectrosc. Radiat. Transfer 52, 481–499 (1994). [CrossRef]
  18. V. Nagali, D. F. Davidson, R. K. Hanson, “Measurements of temperature-dependent argon-broadened half-widths of H2O transitions in the 7117 cm-1 region,” J. Quant. Spectrosc. Radiat. Transfer 64, 651–655 (2000). [CrossRef]
  19. R. A. Toth, “Extensive measurements of H216O line frequencies and strengths: 5750 to 7965 cm-1,” Appl. Opt. 33, 4851–4867 (1994). [CrossRef] [PubMed]
  20. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1945).
  21. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987). [CrossRef] [PubMed]
  22. V. Nagali, “Diode laser study of high-pressure water-vapor spectroscopy,” Thermosciences Division Report 117, Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1998).
  23. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992). [CrossRef]
  24. R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997). [CrossRef]
  25. A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991). [CrossRef] [PubMed]
  26. W. C. Reynolds, stanjan Chemical Equilibrium Solver, Version 3.89, Stanford University, Stanford, California (1987).
  27. R. J. Holdsworth, P. A. Martin, D. Raisbeck, J. Rivero, H. E. Sanders, D. Sheel, M. E. Pemble, “Time-resolved in-situ spectroscopic monitoring of the CVD of tin oxide onto a glass substrate,” Chem. Vap. Deposition 7, 39–43 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited