OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 12 — Apr. 20, 2002
  • pp: 2292–2298

Refractive index of air: 3. The roles of CO2, H2O, and refractivity virials

Philip E. Ciddor  »View Author Affiliations


Applied Optics, Vol. 41, Issue 12, pp. 2292-2298 (2002)
http://dx.doi.org/10.1364/AO.41.002292


View Full Text Article

Enhanced HTML    Acrobat PDF (108 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The author’s recent studies of the refractive index of air are extended, and several assumptions made therein are further examined. It is shown that the alternative dispersion equations for CO2, which are due to Edlen [Metrologia 2, 71 (1966)] and Old et al. [J. Opt. Soc. Am. 61, 89 (1971)] result in differences of less than 2 × 10-9 in the phase refractive index and less than 3 × 10-9 in the group refractive index for current and predicted concentrations of CO2. However, because the dispersion equation given by Old et al. is consistent with experimental data in the near infrared, it is preferable to the equation used by Edlen, which is valid only in the ultraviolet and the visible. The classical measurement by Barrell and Sears [Philos. Trans. R. Soc. London Ser. A 238, 1 (1939)] on the refractivity of moist air is shown to have some procedural errors in addition to the one discussed by Birch and Downs [Metrologia 30, 155 (1993)]. It is shown that for normal atmospheric conditions the higher refractivity virial coefficients related to the Lorentz-Lorenz relation are adequately incorporated into the empirically determined first refractivity virial. As a guide to users the practical limits to the calculation of the refractive index of the atmosphere that result from the uncertainties in the measurement of the various atmospheric parameters are summarized.

© 2002 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology

History
Original Manuscript: August 6, 2001
Revised Manuscript: November 26, 2001
Published: April 20, 2002

Citation
Philip E. Ciddor, "Refractive index of air: 3. The roles of CO2, H2O, and refractivity virials," Appl. Opt. 41, 2292-2298 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-12-2292


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. E. Ciddor, “Refractive index of air: new equations for the visible and the near infrared,” Appl. Opt. 35, 1566–1573 (1996). [CrossRef] [PubMed]
  2. P. E. Ciddor, R. J. Hill, “Refractive index of air: 2. Group index,” Appl. Opt. 38, 1663–1667 (1999). [CrossRef]
  3. B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966). [CrossRef]
  4. C. Cuthbertson, M. Cuthbertson, “On the refraction and dispersion of carbon dioxide, carbon monoxide, and methane,” Proc. R. Soc. London A 97, 152–159 (1920). [CrossRef]
  5. J. G. Old, K. L. Gentili, E. R. Peck, “Dispersion of carbon dioxide,” J. Opt. Soc. Am. 61, 89–90 (1971). [CrossRef]
  6. A. C. Simmons, “The refractive index and Lorentz-Lorenz functions of propane, nitrogen and carbon-dioxide in the spectral range 15803–22002 cm-1 and at 944 cm-1,” Opt. Commun. 25, 211–214 (1978). [CrossRef]
  7. P. Giacomo, “Equation for the determination of the density of moist air (1981),” Metrologia 18, 33–40 (1982). [CrossRef]
  8. R. S. Davis, “Equation for the determination of the density of moist air (1981/1991),” Metrologia 29, 67–70 (1992). [CrossRef]
  9. H. Barrell, J. E. Sears, “The refraction and dispersion of air for the visible spectrum,” Philos. Trans. R. Soc. London Ser. A 238, 1–64 (1939). [CrossRef]
  10. J. C. Owens, “Optical refractive index of air,” Appl. Opt. 6, 51–59 (1967). [CrossRef] [PubMed]
  11. K. P. Birch, M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30, 155–162 (1993). [CrossRef]
  12. K. P. Birch, M. J. Downs, “Correction to the updated Edlen equation for the refractive index of air,” Metrologia 31, 315–316 (1994). [CrossRef]
  13. R. J. Hill, “Refractive index of atmospheric gases,” in The Upper Atmosphere, W. Diemenger, G. Hartmann, R. Leitinger, eds. (Springer, Berlin, 1995), pp. 261–270.
  14. K. P. Birch, M. J. Downs, “The precise determination of the refractive index of air,” Rep. MOM90, (National Physical Laboratory, Teddington, Middlesex, TW11 0LW, U.K., 1988), pp. 1–35.
  15. K. P. Birch, 36 Fircroft Road, Chessington, Surrey, KT9 1RW, U.K. (personal communication, 2000).
  16. H. J. Achtermann, G. Magnus, T. K. Bose, “Refractivity virial coefficients of gaseous CH4, C2H4, C2H6, CO2, SF6, H2, N2, He, and Ar,” J. Chem. Phys. 94, 5669–5684 (1991). [CrossRef]
  17. G. Montixi, R. Coulon, R. Occelli, “Coefficients du viriel de la réfractivité de l’azote à 25 °C,” Can. J. Phys. 61, 473–479 (1983). [CrossRef]
  18. R. C. Burns, C. Graham, A. R. M. Weeler, “Direct measurement and calculation of the second refractivity virial coefficients of gases,” Mol. Phys. 59, 41–64 (1986). [CrossRef]
  19. See, for example, R. Carmichael, “A table of the standard atmosphere to 65,000 feet,” (Public Domain Aeronautical Software, Santa Cruz, Calif., 12June2001), http://www.pdas.com/m1.htm .
  20. I. G. Enting, T. M. L. Wigley, M. Heimann, “Future emissions and concentrations of carbon dioxide: key ocean/atmosphere/land analyses,” Tech. Paper 31 (CSIRO Division of Atmospheric Research, Melbourne, Australia, 1994), p. 120. On-line edition available at http://www.dar.csiro.au , (search for publications\enting_2001a0.pdf ).
  21. R. J. Hill, “Infrared refractive index software, IR_N, 2000,” Environmental Research Laboratories, NOAA, 325 Broadway, Boulder, Colorado 80303-3328 (personal communication, May2000). (A limited number of copies of this software are available on compact disk from P. E. Ciddor or from J.M.Rueger@unsw.edu.au).
  22. Association Internationale de Géodesie, Handbook of Geodesy (on-line edition, 2000),” http://www.gfy.ku.dk/∼iag/HB2000/part2/iag_res.htm .
  23. J. A. Stone, J. H. Zimmerman, “Index of refraction of air,” (National Institute of Science and Technology, Gaithersburg, Maryland, 12June2001), http://patapsco.nist.gov/mel/div821 .
  24. M. J. Kenny, C. J. Walsh, A. J. Leistner, K. Fen, W. J. Giardini, L. S. Wielunski, B. R. Ward, “Determination of the Avogadro constant from precision density measurements on a silicon sphere,” in Proceedings of the Conference on Precision Electromagnetic Measurements, J. Hunter, L. Johnson, eds. (Institute of Electrical and Electronic Engineers, Piscataway, N.J., 2000), pp. 184–185.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited