OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 12 — Apr. 20, 2002
  • pp: 2333–2348

Scattering matrix of infrared radiation by ice finite circular cylinders

Lisheng Xu, Jilie Ding, and Andrew Y. S. Cheng  »View Author Affiliations


Applied Optics, Vol. 41, Issue 12, pp. 2333-2348 (2002)
http://dx.doi.org/10.1364/AO.41.002333


View Full Text Article

Enhanced HTML    Acrobat PDF (544 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Scattering matrix characteristics of polydisperse, randomly oriented, small ice crystals modeled by finite circular cylinders with various ratios of the length to diameter (L/D) ratio are calculated by use of the exact T-matrix approach, with emphasis on the thermal infrared spectral region that extends from the atmospheric short-wave IR window to the far-IR wavelengths to as large as 30 µm. The observed ice crystal size distribution and the well-known power-law distribution are considered. The results of the extensive calculations show that the characteristics of scattering matrix elements of small ice circular cylinders depend strongly on wavelengths and refractive indices, particle size distributions, and the L/D ratios. The applicability of the power-law distribution and particle shapes for light scattering calculations for small ice crystals is discussed. The effects of the effective variance of size distribution on light scattering characteristics are addressed. It seems from the behavior of scattering matrix elements of small ice crystals that the combination of 25 and 3.979 µm has some advantages and potential applications for remote sensing of cirrus and other ice clouds.

© 2002 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.2940) Atmospheric and oceanic optics : Ice crystal phenomena
(040.3060) Detectors : Infrared
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: March 6, 2001
Revised Manuscript: October 21, 2001
Published: April 20, 2002

Citation
Lisheng Xu, Jilie Ding, and Andrew Y. S. Cheng, "Scattering matrix of infrared radiation by ice finite circular cylinders," Appl. Opt. 41, 2333-2348 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-12-2333


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. N. Liou, Y. Takano, P. Yang, “Light scattering and radiative transfer in ice crystal clouds: applications to climate research,” in Preprints of the Conference on Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, L. D. Travis, J. W. Hovenier, eds. (American Meteorological Society, Boston, 1998), pp. 28–31.
  2. K. Sassen, “Contrail-cirrus and their potential for regional climate change,” Bull. Am. Meteorol. Soc. 78, 1885–1903 (1997). [CrossRef]
  3. P. Yang, K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996). [CrossRef]
  4. P. Yang, K. N. Liou, “Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 173–221. [CrossRef]
  5. K. D. Hutchison, N. Choe, “Quantitative assessment on the value of 1.38 µm imagery for the automated analysis of optically thin cirrus in daytime imagery,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere, D. K. Lynch, E. P. Shettle, eds., Proc. SPIE2578, 53–60 (1995). [CrossRef]
  6. K. F. Evans, S. J. Walter, A. J. Heymsfield, M. N. Deeter, “Modeling of submillimeter passive remote sensing of cirrus clouds,” J. Appl. Meteorol. 37, 184–205 (1998). [CrossRef]
  7. J. Hansen, W. Rossow, I. Fung, “Long-term monitoring of global climate forcings and feedbacks,” NASA Conf. Publ. 3234 (NASA Goddard Space Flight Center, Greenbelt, Md., 1993).
  8. J. Hansen, W. Rossow, B. Carlson, A. Lacis, L. Travis, A. Del Genio, I. Fung, B. Cairns, M. Mishchenko, M. Sato, “Low-cost long-term monitoring of global climate forcings and feedbacks,” Climatic Change 31, 247–271 (1995). [CrossRef]
  9. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991). [CrossRef]
  10. M. I. Mishchenko, “Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength,” Appl. Opt. 32, 4652–4666 (1993). [CrossRef] [PubMed]
  11. M. I. Mishchenko, L. D. Travis, A. Macke, “T-matrix method and its applications,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 147–172.
  12. L. Xu, G. Zhang, J. Ding, H. Chen, “Light scattering by polydispersions of randomly oriented hexagonal ice crystals in cirrus clouds: phase function analyses,” Int. J. Light Electron. Opt. 106, 103–114 (1997).
  13. M. I. Mishchenko, J. W. Hovenier, L. D. Travis, “Concepts, terms, notation,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 3–27. [CrossRef]
  14. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  15. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  16. J. W. Hovenier, C. V. M. van der Mee, “Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere,” Astron. Astrophys. 128, 1–16 (1983).
  17. J. F. de Haan, P. B. Bosma, J. W. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).
  18. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  19. G. M. McFarquhar, A. J. Heymsfield, “Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment,” J. Atmos. Sci. 53, 2401–2423 (1996). [CrossRef]
  20. A. J. Heymsfield, G. M. McFarquhar, “High albedos of cirrus in the tropical Pacific warm pool: microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands,” J. Atmos. Sci. 53, 2424–2451 (1996). [CrossRef]
  21. G. M. McFarquhar, University of Illinois at Urbana-Champaign, Urbana, Ill. 61801-3070 (personal communication, 2001).
  22. M. I. Mishchenko, L. D. Travis, “Capabilities and limitations of a current fortran implementation of the T-matrix method for randomly oriented rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998). [CrossRef]
  23. M. S. Quinby-Hunt, P. G. Hull, A. J. Hunt, “Polarized light scattering in the marine environment,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 525–554. [CrossRef]
  24. M. I. Mishchenko, L. D. Travis, “Light scattering by polydisperse, rotationally symmetric nonspherical particles: linear polarization,” J. Quant. Spectrosc. Radiat. Transfer 51, 759–778 (1994). [CrossRef]
  25. L. Xu, J. Ding, “Light scattering characteristics by small ice particles with different size distributions and aspect ratios in visible and 1.38 µm wavelengths,” in Remote Sensing of Clouds and Atmosphere VI, K. Schaefer, O. Lado-Bordowsky, A. Comeron, M. R. Carleer, J. S. Fender, eds., Proc. SPIE4539, 311–319 (2002). [CrossRef]
  26. J. Ding, L. Xu, “Light scattering characteristics by small ice circular cylinders in visible, 1.38 µm, and some infrared wavelengths,” Opt. Eng. (to be published).
  27. E. R. Washwell, ed., GOES-8 and Beyond, Proc. SPIE2812 (1996).
  28. P. Antonelli, W. P. Menzel, F. P. Bretherton, S. A. Ackerman, A. Huang, B. A. Baum, W. L. Smith, “Retrieval of particle size, cloud top pressure, and effective emissivity from aircraft high spectral resolution infrared measurements,” in Remote Sensing of Clouds and Atmosphere VI, K. Schaefer, O. Lado-Bordowsky, A. Comeron, M. R. Carleer, J. S. Fender, eds., Proc. SPIE4539, 41–42 (2002).
  29. M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  30. M. I. Mishchenko, L. D. Travis, A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996). [CrossRef] [PubMed]
  31. A. J. Heymsfield, L. J. Donner, “A scheme for parameterizing ice-cloud water content in general circulation models,” J. Atmos. Sci. 47, 1865–1877 (1990). [CrossRef]
  32. A. Macke, M. I. Mishchenko, “Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles,” Appl. Opt. 35, 4291–4296 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited