OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 12 — Apr. 20, 2002
  • pp: 2349–2354

Isotope 18O/16O ratio measurements of water vapor by use of the 950-nm wavelength region with cavity ring-down and photoacoustic spectroscopic techniques

Ken Samura, Satoshi Hashimoto, Masahiro Kawasaki, Akira Hayashida, Eriko Kagi, Takashi Ishiwata, and Yutaka Matsumi  »View Author Affiliations

Applied Optics, Vol. 41, Issue 12, pp. 2349-2354 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (118 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two optical methods, cavity ring-down spectroscopy and photoacoustic spectroscopy, are applied to the measurement of the isotope ratio 18O/16O in water-vapor samples with a Nd3+:YAG pumped-dye laser. The combination band of (2ν1 + ν3) in the 960-nm region of water molecules is investigated for two standard water samples, the Vienna Standard Mean Ocean Water and the Standard Light Antarctic Precipitation. The results demonstrate that the two methods have the potential of compact systems for in-situ measurements of H2O isotope ratio in the environment.

© 2002 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.7340) Atmospheric and oceanic optics : Water
(020.3260) Atomic and molecular physics : Isotope shifts
(140.2050) Lasers and laser optics : Dye lasers
(300.6430) Spectroscopy : Spectroscopy, photothermal

Original Manuscript: June 5, 2001
Revised Manuscript: December 5, 2001
Published: April 20, 2002

Ken Samura, Satoshi Hashimoto, Masahiro Kawasaki, Akira Hayashida, Eriko Kagi, Takashi Ishiwata, and Yutaka Matsumi, "Isotope 18O/16O ratio measurements of water vapor by use of the 950-nm wavelength region with cavity ring-down and photoacoustic spectroscopic techniques," Appl. Opt. 41, 2349-2354 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Hoefs, Stable Isotope Geochemistry, 3rd ed. (Springer-Verlag, Berlin, 1987). [CrossRef]
  2. K. Lajitha, R. H. Michener, eds., Stable Isotopes in Ecology and Environmental Science (Blackwell, Oxford, 1994).
  3. H. P. Taylor, J. R. O’Neil, I. R. Kaplan, eds., Stable Isotope Geochemistry: A Tribute to Samuel Epstein, Special Publ. No. 3 (Geochemical Society, San Antonio, Tex., 1991).
  4. P. Fritz, J. Ch. Fontes, eds., The Terrestrial Environment, Vol. 1 of Handbook of Environmental Isotope Geochemistry (Elsevier, Amsterdam, 1980).
  5. J. Jouzel, G. L. Russel, R. J. Suozzo, R. D. Koster, J. W. C. White, W. S. Broecker, “Simulations of the HDO and H218O atmospheric cycles using the NASA GISS general circulation model: the seasonal cycle for present-day conditions,” J. Geophys. Res. 92, 14,739–14,760 (1987). [CrossRef]
  6. R. Gonfiantini, “Determinations of the oxygen isotope composition of natural waters” in Stable Isotope Hydrology, J. R. Gat, R. Gonfiantini, eds. (International Atomic Energy Agency, Vienna, 1981).
  7. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  8. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000). [CrossRef]
  9. A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption,” Chem. Phys. Lett. 293, 331–336 (1998). [CrossRef]
  10. A. O’Keefe, J. J. Scherer, J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349 (1999). [CrossRef]
  11. The HITRAN 2000 molecular spectroscopic database can be downloaded from http://cfa-www.harvard.edu/HITRAN/ or ftp://cfa.ftp.harvard.edu/pub/HITRAN/ .
  12. H. Naus, A. de Lange, W. Ubachs, “b1Σ+g-X3-Σ-g(0,0) band of oxygen isotopomers in relation to tests of the symmetrization postulate in 16O2” Phys. Rev. A 56, 4755–4763 (1997). [CrossRef]
  13. S. S. Brown, R. W. Wilson, A. R. Ravishankara, “Absolute intensities for third and fourth overtone absorptions in HNO3 and H2O2 measured by cavity ring-down spectroscopy,” J. Phys. Chem. A 104, 4976–4983 (2000). [CrossRef]
  14. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980).
  15. M. Feher, Y. Jiang, J. P. Maier, A. Miklos, “Optoacoustic trace gas monitoring with near-infrared diode lasers,” Appl. Opt. 33, 1655–1658 (1994). [CrossRef]
  16. Y. Matsumi, M. Kishigami, N. Tanaka, M. Kawasaki, G. Inoue, “Isotope 18O/16O ratio measurements of water vapor by use of photoacoustic spectroscopy,” Appl. Opt. 37, 6558–6562 (1998). [CrossRef]
  17. Y. Ninomiya, S. Hashimoto, M. Kawasaki, T. J. Wallington, “Cavity ring-down study of BrO radicals: kinetics of the Br+O3 reaction and rate of relaxation of vibrationally excited BrO by collisions with N2 and O2,” Int. J. Chem. Kinet. 32, 125–130 (2000). [CrossRef]
  18. J. T. Hodges, J. P. Looney, R. D. van Zee, “Laser bandwidth effects in quantitative cavity ring-down spectroscopy,” Appl. Opt. 35, 4112–4116 (1996). [CrossRef] [PubMed]
  19. S.-C. Xu, D.-X. Dai, J.-C. Xie, G.-H. Sha, C.-H. Zhang, “Quantitative measurements of O2 b ← X(2,1,0 ← 0) bands by using cavity ring-down spectroscopy,” Chem. Phys. Lett. 303, 171–175 (1999). [CrossRef]
  20. J. B. Paul, C. P. Collier, R. J. Saykally, J. J. Scherer, A. O’Keefe, “Direct measurement of water cluster concentrations by infrared cavity ringdown laser absorption spectroscopy,” J. Phys. Chem. A 101, 5211–5214 (1997). [CrossRef]
  21. B. E. Grossmann, E. V. Browell, “Water vapor line broadening and shifting by air, nitrogen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited