OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 12 — Apr. 20, 2002
  • pp: 2355–2360

Aging of reflective Roofs: soot Deposition

Paul Berdahl, Hashem Akbari, and Leanna S. Rose  »View Author Affiliations


Applied Optics, Vol. 41, Issue 12, pp. 2355-2360 (2002)
http://dx.doi.org/10.1364/AO.41.002355


View Full Text Article

Acrobat PDF (115 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Solar-reflective roofs remain cooler than absorptive roofs and thus conserve electricity otherwise needed for air conditioning. A currently controversial aspect of solar-reflective cool roofing is the extent to which an initially high solar reflectance decreases with time. We present experimental data on the spectral absorption of deposits that accumulate on roofs, and we attribute most of the absorption to carbon soot originally produced by combustion. The deposits absorb more at short wavelengths (e.g., in the blue) than in the red and infrared, imparting a slightly yellow tinge to formerly white surfaces. The initial rate of reflectance reduction by soot accumulation is consistent with known emission rates that are due to combustion. The long-term reflectance change appears to be determined by the ability of the soot to adhere to the roof, resisting washout by rain.

© 2002 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(240.6490) Optics at surfaces : Spectroscopy, surface
(300.1030) Spectroscopy : Absorption
(350.4990) Other areas of optics : Particles
(350.6050) Other areas of optics : Solar energy

Citation
Paul Berdahl, Hashem Akbari, and Leanna S. Rose, "Aging of reflective Roofs: soot Deposition," Appl. Opt. 41, 2355-2360 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-12-2355


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Bretz, and H. Akbari, “Long-term performance of high-albedo roof coatings,” Energy Build. 25, 159–167 (1997).
  2. K. E. Wilkes, T. W. Petrie, J. A. Atchley, and P. W. Childs, “Roof heating and cooling loads in various climates for the range of solar reflectances and infrared emittances observed for weathered coatings,” in Proceedings of the 2000 ACEEE Summer Study on Energy Efficiency in Buildings (American Council for an Energy-Efficient Economy, Washington D.C., 2000), Vol. 3, pp. 3.361–3.372.
  3. H. Horvath, P. Pesava, S. Toprak, and R. Aksu, “Technique for measuring the deposition velocity of particulate matter to building surfaces,” Sci. Total Environ. 189–190, 255–258 (1996).
  4. P. Pesava, R. Aksu, S. Toprak, H. Horvath, and S. Seidl, “Dry deposition of particles to building surfaces and soiling,” Sci. Total Environ. 235, 25–35 (1999).
  5. Y. Vargas-Hernandez, “Abschätzung der Einflüsse von Schadstoffen bei der Beschädigung historischer Gabäude,” Ph.D. thesis (Universität Wien, Vienna, Austria, 1994).
  6. H. G. Wagner, “Soot formation, an overview,” in Particulate Carbon, Formation During Combustion, D. C. Siegla and G. W. Smith, eds. (Plenum, New York, 1981), pp. 1–29.
  7. J. Lahaye and G. Prado, “Morphology and internal structure of soot and carbon blacks,” in Particulate Carbon, Formation During Combustion, D. C. Siegla and G. W. Smith, eds. (Plenum, New York, 1981), pp. 33–35.
  8. H. Rosen, A. D. Hansen, L. Gundel, and T. Novakov, “Identification of the optically absorbing component in urban aerosols,” Appl. Opt. 17, 3859–3861 (1978).
  9. H. Rosen, T. Novakov, and B. A. Bodhaine, “Soot in the Arctic,” Atmos. Environ. 15, 1371–1374 (1981).
  10. P. Chylek, V. Ramaswamy, and V. Srivastava, “Albedo of soot-contaminated snow,” J. Geophys. Res. 88, 10837–10843 (1983).
  11. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, Jr., J. E. Hansen, and D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
  12. P. Chylek, V. Ramaswamy, and R. J. Cheng, “Effect of graphitic carbon on the albedo of clouds,” J. Atmos. Sci. 41, 3076–3083 (1984).
  13. A. S. Ackerman, O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, “Reduction of tropical cloudiness by soot,” Science 288, 1042–1047 (2000).
  14. C. G. Cash, “Estimating the durability of roofing systems,” in Durability 2000: Accelerated and Outdoor Weathering Testing, STP 1385, W. D. Ketola and J. D. Evans, eds. (American Society for Testing and Materials, Philadelphia, Pa., 2000), pp. 165–169.
  15. American Society for Testing and Materials, “Standard tables for references solar spectral irradiance at air mass 1.5: direct normal and hemispherical for a 37° tilted surface,” in Book of Standards, Standard G 159–98 (American Society for Testing and Materials, West Conshohocken, Pa., 2001), Vol. 14.04. Hemispherical values were used.
  16. P. Berdahl and S. Bretz, “Preliminary survey of the solar reflectance of cool roofing materials,” Energy Build. 25, 149–158 (1997).
  17. J. Janzen, “The refractive index of colloidal carbon,” J. Colloid Interface Sci. 69, 436–447 (1979).
  18. M. S. Quinby-Hunt, L. L. Erskine, and A. J. Hunt, “Polarized light scattering by aerosols in the marine boundary layer,” Appl. Opt. 36, 5168–5184 (1997).
  19. H. Horvath, “Atmospheric light absorption—a review,” Atmos. Environ. 27A, 293–317 (1993).
  20. J. E. Penner, H. Eddleman, and T. Novakov, “Towards the development of a global inventory for black carbon emissions,” Atmos. Environ. 27A, 1277–1295 (1993).
  21. M. P. Ioannidou, I. I. Bakatsoula, and D. P. Chrissoulidis, “Light scattering and absorption by soot in the presence of sulfate aerosols,” Appl. Opt. 39, 4205–4213 (2000).
  22. M. Z. Jacobson, “Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols,” Nature 409, 695–697 (2001).
  23. V. A. Markel and V. M. Shalaev, “Geometrical renormalization approach to calculating optical properties of fractal carbonaceous soot,” J. Opt. Soc. Am. A 18, 1112–1120 (2001).
  24. J. Zhu, M. Y. Choi, G. W. Mulholland, and L. A. Gritzo, “Measurement of soot optical properties in the near-infrared spectrum,” Int. J. Heat Mass Transfer 43, 3299–3303 (2000).
  25. M. Y. Choi, G. W. Mulholland, A. Hamins, and T. Kashiwagi, “Comparisons of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995).
  26. J. D. Lindberg, R. E. Douglass, and D. M. Garvey, “Carbon and the optical properties of atmospheric dust,” Appl. Opt. 32, 6077–6081 (1993).
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 14.
  28. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 1998).
  29. M. O. Andreae, “The dark side of aerosols,” Nature 409, 671–672 (2001).
  30. J. Lelieveld, P. J. Crutzen, V. Ramanathan, M. O. Andreae, C. A. M. Brenninkmeijer, T. Campos, G. R. Cass, R. R. Dickerson, H. Fischer, J. A. de Gouw, A. Hansel, A. Jefferson, D. Kley, A. T. J. de Laat, S. Lal, M. G. Lawrence, J. M. Lobert, O. L. Mayol-Bracero, A. P. Mitra, T. Novakov, S. J. Oltmans, K. A. Prather, T. Reiner, H. Rodhe, H. A. Scheeren, D. Sikka, and J. Williams, “The Indian Ocean experiment: widespread air pollution from South and Southeast Asia,” Science 291, 1031–1036 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited