OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 13 — May. 1, 2002
  • pp: 2420–2427

Characterization of a CCD-based digital x-ray imaging system for small-animal studies: properties of spatial resolution

Fabrice Ouandji, Eric Potter, Wei R. Chen, Yuhua Li, David Tang, and Hong Liu  »View Author Affiliations

Applied Optics, Vol. 41, Issue 13, pp. 2420-2427 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (358 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A digital x-ray imaging system was designed for small-animal studies. This system is a fiber-optics taper-coupled imaging system with two CCD arrays uniquely jointed. The x-ray source of the system has a small focal spot of 20 µm. This digital imaging system contains specially designed shelves to provide magnification levels, ranging from 1.5× to 5×. The system is characterized in terms of its properties of spatial resolution. An observer-based spatial resolution measurement was conducted with a line-pair target and a sector test pattern. The modulation transfer function of the system, with different magnifications, was studied by use of a 10-µm lead slit. The average resolutions at 50% and 5% modulations at 1× magnification were measured as 3.9 and 8.4 lp/mm, respectively, where lp indicates line pairs. With 5× magnification, the 50% and the 5% modulations provided 13.2- and 29.9-lp/mm, respectively, average spatial resolutions. The measurements showed consistency between the two individual CCD arrays; the difference in resolution between the two CCDs is less than 1%, even at high magnifications.

© 2002 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(110.4100) Imaging systems : Modulation transfer function
(110.7440) Imaging systems : X-ray imaging
(330.6130) Vision, color, and visual optics : Spatial resolution

Original Manuscript: October 4, 2001
Revised Manuscript: January 8, 2002
Published: May 1, 2002

Fabrice Ouandji, Eric Potter, Wei R. Chen, Yuhua Li, David Tang, and Hong Liu, "Characterization of a CCD-based digital x-ray imaging system for small-animal studies: properties of spatial resolution," Appl. Opt. 41, 2420-2427 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Y. Wan, A. P. Kiraly, E. L. Ritman, W. E. Higgins, “Extraction of the hepatic vasculature in rats using 3-D micro-CT images,” IEEE Trans. Med. Imaging 9, 964–971 (2000).
  2. D. W. Holdsworth, M. M. Thornton, D. Drost, P. H. Watson, L. J. Fraher, A. B. Hodsman, “Rapid small-animal dual-energy x-ray absorptiometry using digital radiography,” J. Bone Miner. Res. 12, 2451–2457 (2000). [CrossRef]
  3. W. Luedemann, T. Brinker, M. U. Schuhmann, A. I. von Brenndorf, M. Samii, “Direct magnification technique for cerebral angiography in the rat,” Invest. Radiol. 7, 421–424 (1998). [CrossRef]
  4. H. Schiabel, A. Ventura, A. F. Frere, “A formal study of lateral magnification and its influence on mammographic imaging sharpness,” Med. Phys. 2, 271–276 (1994).
  5. J. Law, “The influence of focal spot size on image resolution and test phantom scores in mammography,” Br. J. Radiol. 66, 441–446 (1993). [CrossRef] [PubMed]
  6. M. Kuchler, M. Friedrich, “Focal spot sizes and the geometric unsharpness of mammographic equipment,” Aktuelle Radiol. 2, 205–211 (1992).
  7. H. Liu, G. Wang, F. Xu, L. L. Fajardo, “Adaptive interpolation for digital mammography systems using multiple detectors,” Appl. Opt. 38, 253–257 (1999). [CrossRef]
  8. H. Liu, G. Wang, “Design of a dual CCD configuration to improve the signal-to-noise ratio,” Med. Phys. 27, 2435–2437 (2000). [CrossRef] [PubMed]
  9. M. J. Yaffe, J. A. Rowlands, “X-ray detectors for digital radiography,” Phys. Med. Biol. 42, 1–39 (1997). [CrossRef] [PubMed]
  10. H. Schiabel, A. F. Frere, P. M. A. Marques, “The modulation transfer function: a simplified procedure for computer-aided quality evaluation in mammography,” IEEE Eng. Med. Biol. Mag. 16, 93–101 (1997). [CrossRef] [PubMed]
  11. F. E. Gannon, T. Fields, C. R. Griffith, L. B. Hubbard, M. V. Broadbent, L. Stanton, “Breast radiography: phantom, equipment performance, and radiation dosage comparisons for 28 major mammography centers in the Midwest,” Radiology 149, 579–582 (1983). [PubMed]
  12. K. T. K. Karila, “Quality control of mammographic equipment: a 5-year follow-up,” Br. J. Radiol. 61, 1155–1167 (1988). [CrossRef] [PubMed]
  13. C. B. Caldwell, M. J. Yaffe, “Development of an anthropomorphic breast phantom,” Med. Phys. 17, 273–280 (1980). [CrossRef]
  14. J. M. Boone, “Determination of the presampled MTF in computed tomography,” Med. Phys. 283, 56–360 (2001).
  15. C. E. Floyd, R. J. Warp, J. T. Dobbins, H. G. Chotas, A. H. Baydush, R. Vargas-Voracek, C. E. Ravin, “Imaging characteristics of an amorphous silicon flat-panel detector for digital chest radiography,” Radiology 218, 683–688 (2001). [CrossRef] [PubMed]
  16. S. Vedantham, A. Karellas, S. Suryanarayanan, I. Levis, M. Sayag, R. Kleehammer, R. Heidsieck, C. J. D’Orsi, “Mammographic imaging with a small format CCD-based digital cassette: physical characteristics of a clinical system,” Med. Phys. 27, 1832–1840 (2000). [CrossRef] [PubMed]
  17. R. H. Vandre, J. C. Pajak, H. Abdel-Nabi, T. T. Farman, A. G. Farman, “Comparison of observer performance in determining the position of endodontic files with physical measures in the evaluation of dental x-ray imaging systems,” Dentomaxillofac. Radiol. 29, 216–222 (2000). [CrossRef] [PubMed]
  18. K. Araki, A. Endo, T. Okano, “An objective comparison of four digital intra-oral radiographic systems: sensitometric properties and resolution,” Dentomaxillofac. Radiol. 29, 76–80 (2000). [CrossRef] [PubMed]
  19. M. Spahn, M. Strotzer, M. Volk, S. Bohm, B. Geiger, G. Hahm, S. Feuerbach, “Digital radiography with a large-area, amorphous-silicon, flat-panel X-ray detector system,” Invest. Radiol. 35, 260–266 (2000). [CrossRef] [PubMed]
  20. E. Samei, M. J. Flynn, D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25, 102–113 (1998). [CrossRef] [PubMed]
  21. T. Yu, J. M. Sabol, J. A. Seibert, J. M. Boone, “Scintillating fiber optic screens: A comparison of MTF, light conversion efficiency, and emission angle with Gd2O2S:Tb screens,” Med. Phys. 24, 279–285 (1997). [CrossRef] [PubMed]
  22. J. M. Boone, T. Yu, J. A. Seibert, “Sinusoidal modulation analysis for optical system MTF measurements,” Med. Phys. 23, 1955–1963 (1996). [CrossRef] [PubMed]
  23. W. D. McDavid, U. Welander, G. C. Sanderink, S. B. Dove, G. Tronje, “A simple method for measuring MTF in direct digital intraoral radiography. Technical note,” Oral Surg. Oral Med. Oral Pathol. 78, 802–805 (1994). [CrossRef] [PubMed]
  24. R. A. Sones, G. T. Barnes, “A method to measure the MTF of digital x-ray systems,” Med. Phys. 11, 166–171 (1984). [CrossRef] [PubMed]
  25. M. L. Giger, K. Doi, “Investigation of basic imaging properties in digital radiography. I. Modulation transfer function,” Med. Phys. 11, 287–295 (1984). [CrossRef] [PubMed]
  26. C. E. Metz, K. Doi, “Transfer function analysis of radiographic imaging systems,” Phys. Med. Biol. 24, 1079–1106 (1979). [CrossRef] [PubMed]
  27. M. J. Flynn, E. Samei, “Experimental comparison of noise and resolution for 2K and 4K storage phosphor radiography systems,” Med. Phys. 26, 1612–1623 (1999). [CrossRef] [PubMed]
  28. J. C. Dainty, R. Shaw, Image Science (Academic, New York, 1974).
  29. V. Kafrandjian, Y. M. Zhu, G. Roziere, G. Peix, D. Babot, “A comparison of the ball, wire, edge, and bar/space pattern techniques for modulation transfer function measurements of linear x-ray detectors,” J. X-Ray Sci. Technol. 6, 205–221 (1996). [CrossRef]
  30. E. Samei, M. Flynn, “A method for measuring the presampled MTF of digital radiographic system using an edge test device,” Med. Phys. 25, 102–113 (1998). [CrossRef] [PubMed]
  31. H. Fujita, D.-Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, A. Ohstuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11, 34–39 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited