OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 13 — May. 1, 2002
  • pp: 2448–2453

Grating-based real-time polarization phase-shifting interferometry: error analysis

Qian Kemao, Wu Xiaoping, and Anand Asundi  »View Author Affiliations

Applied Optics, Vol. 41, Issue 13, pp. 2448-2453 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (113 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A phase Ronchi grating-based real-time polarization phase-shifting method can be efficiently used for dynamic phase measurement in optical interferometry. A thorough error analysis is required for exhibiting how error sources influence phase-measurement results. We analyze the phase-measurement errors that are induced by the retardation error and azimuth angle error of the quarter-wave plate, the azimuth angle error of polarizers, the phase and intensity aberrations of diffractive wave fronts, and pixel mismatch of the interferometric patterns. The results will also be useful for evaluating the phase-measurement accuracy of other similar systems.

© 2002 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

Original Manuscript: April 28, 2001
Revised Manuscript: December 11, 2001
Published: May 1, 2002

Qian Kemao, Wu Xiaoping, and Anand Asundi, "Grating-based real-time polarization phase-shifting interferometry: error analysis," Appl. Opt. 41, 2448-2453 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Robinson, G. T. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (Institute of Physics, Bristol, England, 1993).
  2. M. Takeda, I. Hideki, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  3. Y. Ichioka, M. Inuiya, “Direct phase detecting system,” Appl. Opt. 11, 1507–1514 (1972). [CrossRef] [PubMed]
  4. L. Merts, “Real-time fringe-pattern analysis,” Appl. Opt. 22, 1535–1539 (1983). [CrossRef]
  5. S. Toyooka, M. Tominaga, “Spatial fringe scanning for optical phase measurement,” Opt. Commun. 51, 68–70 (1984). [CrossRef]
  6. D. M. Shough, O. Y. Kwon, D. F. Leary, “High-speed interferometric measurement of aerodynamic phenomena,” in Propagation of High-Energy Laser Beams Through the Earth’s Atmosphere, P. B. Ulrich, L. E. Wilson, eds., Proc. SPIE1221, 394–403 (1990). [CrossRef]
  7. R. Smythe, R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361–364 (1984). [CrossRef]
  8. A. J. P. van Haasteren, H. J. Frankena, “Real-time displacement measurement using a multicamera phase-stepping speckle interferometer,” Appl. Opt. 33, 4137–4142 (1994). [CrossRef]
  9. A. L. Weijers, H. van Brug, H. J. Frankena, “Real-time deformation measurement using a transportable shearoghaphy system,” in International Conference on Experimental Mechanics: Advances and Applications, F. S. Chau, C. T. Lim, eds., Proc. SPIE2921, 76–81 (1996). [CrossRef]
  10. A. L. Weijiers, H. van Brug, H. J. Frankena, “Polarization phase stepping with a Savart element,” Appl. Opt. 37, 5150–5155 (1998). [CrossRef]
  11. M. Kujawinska, L. Salbut, K. Patorski, “Three-channel phase stepped system for moiré interferometry,” Appl. Opt. 30, 1633–1636 (1991). [CrossRef] [PubMed]
  12. J. Kranz, J. Lamprecht, A. Hettwer, J. Schwider, “Fiber optical single-frame speckle interferometer for measuring industrial surface,” in International Conference on Applied Optical Metrology, P. K. Rastogi, F. Gyimesi, eds., Proc. SPIE3407, 328–331 (1998). [CrossRef]
  13. K. Qian, H. Miao, X. Wu, “Real-time polarization phase shifting technique for dynamic deformation measurement,” Opt. Lasers Eng. 31, 289–295 (1999). [CrossRef]
  14. K. Qian, H. Miao, X. Wu, “A real-time polarization phase shifting technique for dynamic measurement,” Acta Opt. Sin. 21, 64–67 (2001) (in Chinese).
  15. O. Y. Kwon, “Multichannel phase-shifted interferometer,” Opt. Lett. 9, 59–61 (1984). [CrossRef] [PubMed]
  16. O. Y. Kwon, D. M. Shough, “Multichannel grating phase-shift interferometers,” in Optics in Engineering Measurement, W. F. Fagan, ed., Proc. SPIE599, 273–278 (1985). [CrossRef]
  17. O. Y. Kwon, “Advanced wavefront sensing at Lockheed,” in Interferometric Metrology, N. A. Massie, ed., Proc. SPIE816, 196–211 (1987). [CrossRef]
  18. M. Kujawinska, D. W. Robinson, “Multichannel phase-stepped holographic interferometry,” Appl. Opt. 27, 312–320 (1988). [CrossRef] [PubMed]
  19. M. Kujawinska, J. Wojciak, “Spatial phase-shifting techniques of fringe pattern analysis in photomechanics,” in Second International Conference on Photomechanics and Speckle Metrology: Moire Techniques, Holographic Interferometry, Optical NDT, and Applications to Fluid Mechanics, F. Chiang, ed., Proc. SPIE1554B, 503–513 (1991).
  20. B. B. García, A. J. Moore, C. Pérez-López, L. Wang, T. Tschudi, “Transient deformation measurement with electronic speckle pattern interferometry by use of a holographic optical element for spatial phase stepping,” Appl. Opt. 38, 5944–5947 (1999). [CrossRef]
  21. H. Miao, “The studies on real-time phase measurement technique and its application to protein crystal growth,” Ph.D. dissertation (University of Science and Technology of China, Hefei, China, 1999).
  22. M. P. Kothiyal, C. Delisle, “Polarization component phase shifters in phase shifting interferometry: error analysis,” Opt. Acta 33, 787–793 (1986). [CrossRef]
  23. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1988), Vol. 26, pp. 349–393. [CrossRef]
  24. J. van Wingerden, H. J. Frankena, C. Smorenburg, “Linear approximation for measurement errors in phase shifting interferometry,” Appl. Opt. 30, 2718–2729 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited