OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 13 — May. 1, 2002
  • pp: 2461–2469

Stabilization by harmonic intensities for the output signal in heterodyne detection

Manabu Sato and Naohiro Tanno  »View Author Affiliations

Applied Optics, Vol. 41, Issue 13, pp. 2461-2469 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrated that the technique to stabilize the output signal by harmonic intensities is useful in heterodyne detection with an incoherent light source such as a halogen lamp. The relation between the relative standard deviation of an output signal and the fluctuation of the light intensity is analyzed and simulated. Using the fundamental to sixth harmonics increases the stabilities of output signal approximately 3 times, and subtracting the relative standard deviation of the intensity of light source enhances the stabilities 49 times. The fluctuating phase that is due to the fluctuating frequency and temperature and its power spectrum density for an interferometer is also calculated with the Allan variance.

© 2002 Optical Society of America

OCIS Codes
(040.2840) Detectors : Heterodyne
(110.4500) Imaging systems : Optical coherence tomography
(120.1880) Instrumentation, measurement, and metrology : Detection
(170.3880) Medical optics and biotechnology : Medical and biological imaging

Original Manuscript: August 27, 2001
Revised Manuscript: December 11, 2001
Published: May 1, 2002

Manabu Sato and Naohiro Tanno, "Stabilization by harmonic intensities for the output signal in heterodyne detection," Appl. Opt. 41, 2461-2469 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Gelmini, U. Minoni, F. Docchio, “A tunable, double-wavelength heterodyne detection interferometer with frequency-locked diode-pumped Nd:YAG sources for absolute measurements,” Rev. Sci. Instrum. 66, 4073–4080 (1995). [CrossRef]
  2. C. Grener, B. Boggs, T. Wang, T. W. Mossberg, “Laser frequency stabilization by means of optical self-heterodyne beat-frequency control,” Opt. Lett. 23, 1280–1282 (1998). [CrossRef]
  3. D. Narayana Rao, V. Nirmal Kumar, “Stability improvements for an interferometer through study of spectral interference patterns,” Appl. Opt. 38, 2014–2017 (1999). [CrossRef]
  4. S. R. Chinn, E. A. Swanson, “Blindness limitations in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993). [CrossRef]
  5. M. Takeda, H. Yamamoto, “Fourier-transform speckle profilometry: three-dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces,” Appl. Opt. 33, 7829–7837 (1994). [CrossRef] [PubMed]
  6. N. Tanno, T. Ichimura, T. Funaba, N. Anndo, Y. Odagiri, “Optical multimode frequency-domain reflectometer,” Opt. Lett. 19, 587–589 (1994). [CrossRef]
  7. B. Devaraji, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: Laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996). [CrossRef]
  8. T. Funaba, N. Tanno, H. Ito, “Multimode laser reflectometer with a multichannel wavelength detector and its application,” Appl. Opt. 36, 8919–8928 (1997). [CrossRef]
  9. G. Le Tolguenec, E. Lantz, F. Devaux, “Imaging through scattering media by parametric amplification of images: Study of the resolution and the signal-to-noise ratio,” Appl. Opt. 36, 8292–8297 (1997). [CrossRef]
  10. A. C. Millard, P. W. Wiseman, D. N. Fittinghoff, K. R. Wilson, J. A. Squier, M. Muller, “Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source,” Appl. Opt. 38, 7393–7397 (1999). [CrossRef]
  11. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumam, W. G. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  12. J. A. Izatt, M. D. Kulkarrni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996). [CrossRef]
  13. A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3, 12–20 (1998). [CrossRef] [PubMed]
  14. B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersent, S. E. Ungersma, R. Wang, M. E. Williams, “An optical coherence microscope for 3-dimensional imaging in developmental biology,” Opt. Express 6, 136–146 (2000), http://www.opticsexpress.org . [CrossRef] [PubMed]
  15. M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Opt. Commun. 184, 95–104 (2000). [CrossRef]
  16. M. Sato, Y. Ikeda, M. Endo, S. Fukuda, N. Tanno, “Phase-drift suppression in heterodyne detection using coherent light source,” Opt. Rev. 8, 37–42 (2000). [CrossRef]
  17. M. Ohtsu, H. Fukuda, T. Tako, H. Tsuchida, “Estimation of the ultimate frequency stability of semiconductor lasers,” Jpn. J. Appl. Phys. 22, 1157–1166 (1983). [CrossRef]
  18. I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1982).
  19. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1944), pp. 452–454.
  20. Y. Noguchi, Y. Teramachi, T. Musha, “Correlation between frequency fluctuations of a quartz oscillator and temperature fluctuations,” Jpn. J. Appl. Phys. 21, 61–66 (1982). [CrossRef]
  21. M. Sato, M. Endo, N. Tanno, “Phase-drift suppression method using higher order harmonics in heterodyne detection,” Opt. Rev. 7, 462–467 (2000). [CrossRef]
  22. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1991), p. 241.
  23. T. Ikari, M. Sato, N. Tanno, “Compact optical coherence tomography system using partially delayed Fizeau interferometer,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), CTuY.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited