OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 13 — May. 1, 2002
  • pp: 2481–2487

Phase anomalies in Fourier-transform spectrometers: an absorbing beam splitter is neither sufficient nor necessary

John C. Brasunas  »View Author Affiliations


Applied Optics, Vol. 41, Issue 13, pp. 2481-2487 (2002)
http://dx.doi.org/10.1364/AO.41.002481


View Full Text Article

Enhanced HTML    Acrobat PDF (116 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently it has been a topic of some discussion that the phase associated with part of the self-emission of a Fourier-transform spectrometer may differ neither by 0 nor by π rad from the phase of an external target if there is absorption in the beam splitter. The conventional interpretation of this has been to separate the self-emission into three terms: instrument emission from the input port, in phase with the external target; emission from the secondary input port, π rad from the target; and emission from an absorbing beam splitter with an anomalous phase (neither 0 nor π rad with respect to the target). There is another necessary condition that has not received much attention, that the instrument not be isothermal. For polarized radiation there is an additional condition that suppresses the anomalous phase, and for unpolarized radiation there is a way to produce an anomalous phase without beam-splitter absorption.

© 2002 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(230.1360) Optical devices : Beam splitters
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

History
Original Manuscript: September 21, 2001
Revised Manuscript: January 18, 2002
Published: May 1, 2002

Citation
John C. Brasunas, "Phase anomalies in Fourier-transform spectrometers: an absorbing beam splitter is neither sufficient nor necessary," Appl. Opt. 41, 2481-2487 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-13-2481


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Monzon, L. L. Sanchez-Soto, “Some properties of absorbing beam splitters,” Optik 97, 71–74 (1994).
  2. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder,” Appl. Opt. 27, 3210–3218 (1988). [CrossRef] [PubMed]
  3. C. Weddigen, C. E. Blom, M. Hopfner, “Phase corrections for the emission sounder MIPAS-FT,” Appl. Opt. 32, 4586–4589 (1993). [CrossRef] [PubMed]
  4. C. E. Blom, M. Hopfner, C. Weddigen, “Correction of phase anomalies of atmospheric emission spectra by the double-differencing method,” Appl. Opt. 35, 2649–2652 (1996). [CrossRef] [PubMed]
  5. J. Schreiber, T. Blumenstock, H. Fischer, “Effects of the self-emission of an IR Fourier-transform spectrometer on measured absorption spectra,” Appl. Opt. 35, 6203–6209 (1996). [CrossRef] [PubMed]
  6. J. J. Monzon, L. L. Sanchez-Soto, “Absorbing beam splitter in a Michelson interferometer,” Appl. Opt. 34, 7834–7839 (1995). [CrossRef] [PubMed]
  7. J.-M. Thériault, “Beam splitter layer emission in Fourier-transform infrared interferometers,” Appl. Opt. 37, 8348–8351 (1998). [CrossRef]
  8. J.-M. Thériault, “Modeling the responsivity and self-emission of a double-beam Fourier-transform infrared interferometer,” Appl. Opt. 38, 505–515 (1999). [CrossRef]
  9. B. Carli, L. Palchetti, P. Raspollini, “Effect of beam-splitter emission in Fourier-transform emission spectroscopy,” Appl. Opt. 38, 7475–7480 (1999). [CrossRef]
  10. R. Hanel, D. Crosby, L. Herath, D. Vanous, D. Collins, H. Creswick, C. Harris, M. Rhodes, “Infrared spectrometer for Voyager,” Appl. Opt. 19, 1391–1400 (1980). [CrossRef] [PubMed]
  11. V. Kunde, P. Ade, R. Barney, D. Bergman, J. F. Bonnal, R. Borelli, D. Boyd, J. Brasunas, G. Brown, S. Calcutt, R. Courtin, J. Cretolle, J. Crooke, M. Davis, S. Edberg, R. Fettig, M. Flasar, D. Glenar, S. Graham, J. Hagopian, C. Hakun, P. Hayes, L. Herath, L. Horn, D. Jennings, G. Karpati, C. Kellebenz, B. Lakew, J. Lindsey, J. Lohr, J. Lyons, R. Martineau, A. Martino, M. Matsumura, J. McCloskey, T. Melak, G. Michel, A. Morell, C. Mosier, L. Pack, M. Plants, D. Robinson, L. Rodriguez, P. Romani, W. Schaefer, S. Schmidt, C. Trujillo, T. Vellacott, K. Wagner, D. Yun, “Cassini infrared Fourier spectroscopic investigation,” in Cassini/Huygens: A Mission to the Saturnian Systems, L. Horn, ed., Proc. SPIE2803, 162–177 (1996). [CrossRef]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1975), pp. 628–632.
  13. B. Carli, “Reflectivity of metallic films in the infrared,” J. Opt. Soc. Am. 67, 908–910 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited