OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 13 — May. 1, 2002
  • pp: 2561–2574

SPIFI: a direct-detection imaging spectrometer for submillimeter wavelengths

C. Matt Bradford, Gordon J. Stacey, Mark R. Swain, Thomas Nikola, Alberto D. Bolatto, James M. Jackson, Maureen L. Savage, Jacqueline A. Davidson, and Peter A. R. Ade  »View Author Affiliations


Applied Optics, Vol. 41, Issue 13, pp. 2561-2574 (2002)
http://dx.doi.org/10.1364/AO.41.002561


View Full Text Article

Enhanced HTML    Acrobat PDF (590 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The South Pole Imaging Fabry-Perot Interferometer (SPIFI) is the first instrument of its kind—a direct-detection imaging spectrometer for astronomy in the submillimeter band. SPIFI’s focal plane is a square array of 25 silicon bolometers cooled to 60 mK; the spectrometer consists of two cryogenic scanning Fabry-Perot interferometers in series with a 60-mK bandpass filter. The instrument operates in the short submillimeter windows (350 and 450 µm) available from the ground, with spectral resolving power selectable between 500 and 10,000. At present, SPIFI’s sensitivity is within a factor of 1.5–3 of the photon background limit, comparable with the best heterodyne spectrometers. The instrument’s large bandwidth and mapping capability provide substantial advantages for specific astrophysical projects, including deep extragalactic observations. We present the motivation for and design of SPIFI and its operational characteristics on the telescope.

© 2002 Optical Society of America

OCIS Codes
(040.6040) Detectors : Silicon
(050.2230) Diffraction and gratings : Fabry-Perot
(300.6270) Spectroscopy : Spectroscopy, far infrared
(350.1260) Other areas of optics : Astronomical optics
(350.1270) Other areas of optics : Astronomy and astrophysics

History
Original Manuscript: October 18, 2001
Revised Manuscript: January 9, 2002
Published: May 1, 2002

Citation
C. Matt Bradford, Gordon J. Stacey, Mark R. Swain, Thomas Nikola, Alberto D. Bolatto, James M. Jackson, Maureen L. Savage, Jacqueline A. Davidson, and Peter A. R. Ade, "SPIFI: a direct-detection imaging spectrometer for submillimeter wavelengths," Appl. Opt. 41, 2561-2574 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-13-2561


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Kooi, Caltech Submillimeter Astrophysics Pasadena, Calif. 91125 (personal communication, 2000).
  2. R. Hills, J. Richer, S. Withington, H. Smith, H. Gibson, B. Dent, W. Duncan, J. Harris, P. Hastings, L. Avery, C. Cunningham, P. Feldman, R. Redman, K. Yeung, P. Jewell, “Heterodyne array receiver programme for the James Clerk Maxwell Telescope” (2000), http://www.jach.hawaii.edu/JACpublic/JCMT/Heterodyne_observing/Instrument_homes/harp-info.html .
  3. J. Keene, G. A. Blake, T. G. Phillips, P. J. Huggins, C. A. Beichman, “The abundance of atomic carbon near the ionization fronts in M17 and S140,” Astrophys. J. 299, 967–980 (1985). [CrossRef]
  4. J. Zmuidzinas, A. L. Betz, R. T. Boreiko, D. M. Goldhaber, “Neutral atomic carbon in dense molecular clouds,” Astrophys. J. 335, 774–785 (1988). [CrossRef]
  5. C. K. Walker, G. Narayanan, T. Buttgenbach, J. Carlstrom, J. Keene, T. G. Phillips, “The detection of [CI] in molecular outflows associated with young stellar objects,” Astrophys. J. 415, 672–679 (1993). [CrossRef]
  6. R. Plume, D. T. Jaffe, J. Keene, “Observations of large-scale [CI] emission from S140,” Astrophys. J. 425, L49–L52 (1994). [CrossRef]
  7. W. Wild, A. I. Harris, A. Eckhart, U. U. Graf, J. M. Jackson, A. P. G. Russell, J. Stutzki, “A multi-line study of the molecular interstellar medium in M 82’s starburst nucleus,” Astron. Astrophys. 265, 447–464 (1992).
  8. A. I. Harris, “Directions for submillimeter and far-infrared instrumentation,” in The Physics and Chemistry of the Interstellar Medium, Proceedings of the Third Cologne-Zermatt Symposium, V. Ossenkopf, J. Stutzki, G. Winnewisser, eds. (GCA-Verlag Herdecke, Germany, 1999).
  9. J. E. Carlstrom, J. Zmuidzinas, “Millimeter and submillimeter techniques,” in Reviews Radio Science 1993–1995, W. R. Stone, ed. (Oxford U. Press, Oxford, UK, 1996).
  10. J. R. Tucker, M. J. Feldman, “Quantum detection at millimeter wavelengths,” Rev. Mod. Phys. 57, 1055–1113 (1985). [CrossRef]
  11. M. Gerin, T. G. Phillips, “Atomic carbon in Arp 220,” Astrophys. J. 509, L17–L20 (1998). [CrossRef]
  12. G. J. Stacey, J. W. Beeman, E. E. Haller, N. Geis, A. Poglistch, M. Rumitz, “Stressed and unstressed Ge:Ga photoconductor arrays for far-IR astronomy,” Int. J. Infrared Millim. Waves 13, 1689–1700 (1991). [CrossRef]
  13. W. S. Holland, C. R. Cunningham, W. K. Gear, T. Jenness, K. Laidlaw, J. F. Lightfoot, E. I. Robson, “SCUBA, a submillimeter camera operating on the James Clerk Maxwell Telescope,” in Advanced Technology MMW, Radio, and Terahertz Telescopes, T. G. Phillips, ed., Proc. SPIE3357, 305–318 (1998). [CrossRef]
  14. N. Wang, T. R. Hunter, D. J. Benford, E. Serabyn, D. C. Lis, T. G. Phillips, S. H. Moseley, K. Boyce, A. Szymkowiak, C. Allen, B. Mott, J. Gygax, “Characterization of a submillimeter high-angular-resolution camera with a monolithic silicon bolometer array for the Caltech Submillimeter Observatory,” Appl. Opt. 35, 6629–6640 (1996). [CrossRef] [PubMed]
  15. M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. Savage, J. A. Davidson, “Design of the South Pole Imaging Fabry-Perot Interferometer (SPIFI),” in Infrared Astronomical Instrumentation, A. Fowler, ed., Proc. SPIE3354, 480–492 (1998). [CrossRef]
  16. H. M. Latvakoski, “High spatial resolution mid and far-infrared imaging of the Galactic Center,” Ph.D. dissertation (Cornell University, Ithaca, N.Y., 1997).
  17. A. Poglitsch, J. W. Beeman, N. Geis, M. Haggerty, E. E. Haller, J. M. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far-infrared imaging Fabry-Perot interferometer (FIFI),” Int. J. Infrared Millim. Waves 12, 859–870 (1991). [CrossRef]
  18. A. Harper, R. H. Hildebrand, R. Stiening, R. Winston, “Heat trap: an optimized far infrared field optics system,” Appl. Opt. 15, 53–60 (1976). [CrossRef] [PubMed]
  19. D. J. Schroeder, Astronomical Optics (Academic, San Diego, Calif., 1987), Chap. 15.
  20. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980), Chap. 7.
  21. G. J. Stacey, T. L. Hayward, H. M. Latvakoski, G. E. Gull, “KWIC: a widefield mid-infrared array camera/spectrometer for the KAO,” in Infrared Detectors and Instrumentation, A. M. Fowler, ed., Proc. SPIE1946, 238–248 (1993). [CrossRef]
  22. K. Sakai, L. Genzel, “Far-infrared metal mesh filter and Fabry-Perot interferometry,” in Reviews of Infrared and Millimeter Waves, K. J. Button, ed. (Plenum, New York, 1983). [CrossRef]
  23. D. McCammon, W. Cui, M. Juda, J. Morgenthaler, J. Zhang, R. L. Kelley, S. S. Holt, G. M. Madejski, S. H. Moseley, A. E. Szymkowiak, “Thermal calorimeters for high resolution X-ray spectroscopy,” Nucl. Instrum. Methods Phys. Res. A 326, 157–165 (1993). [CrossRef]
  24. S. H. Moseley, J. C. Mather, D. McCammon, “Thermal detectors as X-ray spectrometers,” J. Appl. Phys. 56, 1257–1262 (1984). [CrossRef]
  25. G. H. Rieke, Detection of Light from the Ultraviolet to the Submillimeter (Cambridge U. Cambridge, Mass., 1994), Chap. 9.
  26. J. C. Mather, “Bolometers: ultimate sensitivity, optimization, and amplifier coupling,” Appl. Opt. 23, 584–588 (1984). [CrossRef] [PubMed]
  27. S.-I. Han, R. Almy, E. Apodaca, W. Bergmann, S. Deiker, A. Lesser, D. McCammon, K. Rawlins, R. L. Kelley, S. H. Moseley, F. S. Porter, C. K. Stahle, A. E. Szymkowiak, “Intrinsic 1/f noise in doped silicon thermistors for cryogenic calorimeters,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy IX, O. H. Siegmund, M. A. Gummin, eds., Proc. SPIE3445, 640–644 (1998). [CrossRef]
  28. G. K. White, Experimental Techniques in Low-Temperature Physics (Clarendon, Oxford, UK, 1979), Chap. 9.
  29. H. E. Fischer, “Magnetic cooling,” in Experimental Techniques in Condensed Matter Physics at Low Temperatures, R. C. Richardson, E. N. Smith, eds. (Addison-Wesley, Reading, Mass., 1998).
  30. D. McCammon, R. Almy, S. Deiker, J. Morgenthaler, R. L. Kelley, F. J. Marshall, S. H. Moseley, C. K. Stahle, A. E. Szymkowiak, “A sounding rocket payload for X-ray astronomy employing high-resolution microcalorimeters,” Nucl. Instrum. Methods Phys. Res. A 370, 266–268 (1996). [CrossRef]
  31. J. Ashok, P. L. H. Varaprasad, J. R. Birch, “Polyethylene,” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, Boston, Mass., 1991).
  32. R. Stark, Max-Planck-Institute für Radiastronomie, Bonn, Germany (personal communication, 2000).
  33. See paper by R. Stark, “MPIRE: the MPIfR/SRON 800 GHz heterodyne spectrometer,” http://www.mpifr-bonn.mpg.de/div/mm/tech/mpire.html , (2000).
  34. J. R. Pardo, J. Cernicharo, E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for mm/submm applications,” IEEE Trans. Antennas Propag. 49, 1683–1694 (2001). [CrossRef]
  35. J. R. Pardo, J. Cernicharo, E. Serabyn, “Submillimeter atmospheric transmission measurements on Mauna Kea during extremely dry El Nino conditions: implications for broadband opacity contributions,” J. Quant. Spectrosc. Radiat. Transfer 68, 419–433 (2001). [CrossRef]
  36. See paper by H. Matthews, “Estimating time requirements and sensitivity for heterodyne receivers” (1999), http://www.jach.hawaii.edu/JACpublic/JCMT/User_documentation/Users_guide/guide/node29.html .
  37. J. M. Lamarre, “Photon noise in photometric instruments at far-infrared and submillimeter wavelengths,” Appl. Opt. 25, 870–876 (1986). [CrossRef] [PubMed]
  38. J. Zmuidzinas, Caltech Submillimeter Astrophysics Pasadena, Calif. (personal communication (2000).
  39. D. J. Benford, T. R. Hunter, T. G. Phillips, “Noise equivalent power of background limited thermal detectors at submillimeter wavelengths,” Int. J. Infrared Millim. Waves 19, 931–938 (1998). [CrossRef]
  40. J. W. Kooi, J. Kawamura, J. Chen, G. Chattopadhyay, J. R. Pardo, J. Zmuidzinas, T. G. Phillips, B. Bumble, J. Stern, H. G. LeDuc, “A low-noise, NbTiN-based 850 GHz SIS receiver for the Caltech Submillimeter Observatory,” Int. J. Infrared Millim. Waves 21, 1357–1373 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited