OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 13 — May. 1, 2002
  • pp: 2575–2585

Patterning Flood Illumination with Microlens Arrays

Ming-Hsien Wu, Kateri E. Paul, and George M. Whitesides  »View Author Affiliations

Applied Optics, Vol. 41, Issue 13, pp. 2575-2585 (2002)

View Full Text Article

Acrobat PDF (2991 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a convenient lithographic technique that can produce simple, repetitive micropatterns over large areas (several square centimeters). The technique uses an illuminated array of micrometer-scale lenses to generate an array of optical patterns in an image plane located within micrometer distances from the lens array. A layer of photoresist, placed in the image plane, records the patterns. Microlenses with different sizes, profiles, composition, and indices of refraction produce corresponding patterns in exposed and developed photoresist. Both spherical and nonspherical microlenses were examined. Several types of optical element containing arrays of microlenses were fabricated and used to demonstrate that this technique can generate uniform micropatterns over large areas (>4 cm<sup>2</sup>) in a single exposure. The smallest features produced had dimensions of ~100 nm.

© 2002 Optical Society of America

OCIS Codes
(110.3960) Imaging systems : Microlithography
(110.5220) Imaging systems : Photolithography
(160.5470) Materials : Polymers
(220.3630) Optical design and fabrication : Lenses
(350.3850) Other areas of optics : Materials processing
(350.3950) Other areas of optics : Micro-optics

Ming-Hsien Wu, Kateri E. Paul, and George M. Whitesides, "Patterning Flood Illumination with Microlens Arrays," Appl. Opt. 41, 2575-2585 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
  2. E. A. Parker, S. M. A. Hamdy, and R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17, 880–881 (1981).
  3. K. J. Kogler and R. G. Paster, “Infrared filters fabricated from submicron loop antenna arrays,” Appl. Opt. 27, 18–19 (1988).
  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University, Princeton, N.J., 1995).
  5. C. Berger, N. Collings, R. Vökel, M. T. Gale, and T. Hessler, “A microlens-array-based optical neural network application,” Pure Appl. Opt. 6, 683–689 (1997).
  6. J. Schwider, W. Stork, N. Streibl, and R. Vökel, “Possibilities and limitations of space-variant holographic optical elements for switching networks and general interconnections,” Appl. Opt. 31, 7403–7410 (1992).
  7. R. Vökel, H. P. Herzig, P. Nussbaum, W. Singer, R. Dändliker, and W. B. Hugle, “Microlens lithography: a new approach for large display fabrication,” Microelectron. Eng. 30, 107–110 (1996).
  8. M. Ida, B. Montmayeul, and R. Meyer, “New microlithography technique for large size field emission displays,” in Euro Display ’96: International Display Research Conference (American Society for International Science and Technology, Silver Spring, Md., 1996), pp. 177–180.
  9. W. M. Moreau, Semiconductor Lithography (Plenum, New York, 1989), Chap. 8.
  10. R. Dändliker, S. Gray, F. Clube, H. P. Herzig, and R. Vökel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27, 205–211 (1995).
  11. S. M. Sze, VLSI Technology (McGraw-Hill, Singapore, 1988), Chap. 4.3.
  12. M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
  13. S. Hayashi, Y. Kumamoto, T. Suzuki, and T. Hirai, “Imaging by polystyrene latex particles,” J. Colloid Interface Sci. 144, 538–547 (1991).
  14. M.-H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection photolithography,” Appl. Phys. Lett. 78, 2273–2275 (2001).
  15. P. Nussbaum, R. Vökel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication, and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
  16. H. A. Biebuyck and G. M. Whitesides, “Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold,” Langmuir 10, 2790–2793 (1994).
  17. Y. Lu, Y. Yin, and Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13, 34–37 (2001).
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  19. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  20. M. Born, and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 13.5.
  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  22. M. Sasaki, T. Kurosawa, and K. Hane, “Micro-objective manipulated with optical tweezers,” Appl. Phys. Lett. 70, 785–787 (1997).
  23. M. E. J. Friese, A. G. Truscott, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Three-dimensional imaging with optical tweezers,” Appl. Opt. 38, 6597–6603 (1999).
  24. J. P. Brody and S. R. Quake, “A self-assembled microlensing rotational probe,” Appl. Phys. Lett. 74, 144–146 (1999).
  25. T. Yamasaki and T. Tsutusi, “Fabrication and optical properties of two-dimensional ordered arrays of silica microspheres,” Jpn. J. Appl. Phys. 38, 5916–5921 (1999).
  26. R. D. Pradhan, J. A. Bloodgood, and G. H. Watson, “Photonic band structure of bcc colloidal crystals,” Phys. Rev. B 55, 9503–9507 (1997).
  27. J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Qualifying distortion in soft lithography,” J. Vac. Sci. Technol. B 16, 88–97 (1998).
  28. J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging profiles of light intensity in the near field: application to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
  29. J. A. Rogers, O. J. A. Schueller, C. Marzolin, and G. M. Whitesides, “Wave-front engineering by use of transparent elastomeric optical elements,” Appl. Opt. 36, 5792–5795 (1997).
  30. J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
  31. Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
  32. A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension,” Opt. Eng. 39, 2171–2176 (2000).
  33. C. B. Gorman, H. A. Biebuyck, and G. M. Whitesides, “Use of a patterned self-assembled monolayer to control the formation of a liquid resist pattern on a gold surface,” Chem. Mater. 7, 252–254 (1995).
  34. E. Kim, G. M. Whitesides, L. K. Lee, S. P. Smith, and M. Prentiss, “Fabrication of arrays of channel waveguides by self-assembly using patterned organic monolayers as templates,” Adv. Mater. 8, 139–142 (1996).
  35. A. Kumar and G. M. Whitesides, “Patterned condensation figures as optical diffraction gratings,” Science 263, 60–62 (1994).
  36. Y. Xia, E. Kim, X.-M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
  37. E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
  38. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8, 3183–3190 (1992).
  39. J. L. Wilbur, R. J. Jackman, and G. M. Whitesides, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
  40. T. K. Wu, Frequency Selective Surface and Grid Array (Wiley, New York, 1995).
  41. V. Dhayalan, T. Standnes, J. Stamens, and H. Heler, “Scalar and electromagnetic diffraction point-spread functions for high-NA microlenses,” Pure Appl. Opt. 6, 603–615 (1997).
  42. C. Van Berkel, B. P. McGarvey, and J. A. Clarke, “Microlens arrays for 2D large area image sensors,” Pure Appl. Opt. 3, 177–182 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited