OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 14 — May. 10, 2002
  • pp: 2627–2643

Optical high-precision three-dimensional vision-based quality control of manufactured parts by use of synthetic images and knowledge for image-data evaluation and interpretation

Pierre Graebling, Alex Lallement, Da-Yi Zhou, and Ernest Hirsch  »View Author Affiliations


Applied Optics, Vol. 41, Issue 14, pp. 2627-2643 (2002)
http://dx.doi.org/10.1364/AO.41.002627


View Full Text Article

Enhanced HTML    Acrobat PDF (2360 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Vision-based evaluation of industrial workpieces can make efficient use of knowledge-based approaches, in particular for quality control, inspection, and accurate-measurement tasks. A possible approach is to compare real images with conceptual (synthetic) images generated by use of standard computer-aided design models, which include tolerances and take the application-specific conditions into account (e.g., the measured-calibration data). Integrated in (industrial) real-life environments, our evaluation methods have been successfully applied to on-line inspection of manufactured parts including sculptured surfaces, using structured light techniques for the reconstruction of three-dimensional shapes. Accuracies in the range 15–50 µm are routinely achieved by use of either isolated images or spatially registered image sequences.

© 2002 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(150.0150) Machine vision : Machine vision
(150.3040) Machine vision : Industrial inspection
(150.6910) Machine vision : Three-dimensional sensing

History
Original Manuscript: July 2, 2001
Revised Manuscript: January 16, 2002
Published: May 10, 2002

Citation
Pierre Graebling, Alex Lallement, Da-Yi Zhou, and Ernest Hirsch, "Optical high-precision three-dimensional vision-based quality control of manufactured parts by use of synthetic images and knowledge for image-data evaluation and interpretation," Appl. Opt. 41, 2627-2643 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-14-2627


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. J. Bayro-Corrochano, “Review of automated visual inspection 1983–1993, Part I: conventional approaches,” in Intelligent Robots and Computer Vision XII: Algorithms and Techniques, D. P. Casasent, ed., Proc. SPIE2055, 128–158 (1993). [CrossRef]
  2. E. J. Bayro-Corrochano, “Review of automated visual inspection 1983–1993, Part II: Approaches to intelligent systems,” in Intelligent Robots and Computer Vision XII: Algorithms and Techniques, D. P. Casasent, ed., Proc. SPIE2055, 159–173 (1993). [CrossRef]
  3. T. Newman, A. Jain, “A system for 3D CAD-based inspection using range images,” Pattern Recogn. 20, 1555–1574 (1995). [CrossRef]
  4. C. Costa, M. Petrou, “Automatic registration of ceramic tiles for the purpose of fault detection,” Mach. Vision Appl. 11, 225–230 (2000). [CrossRef]
  5. F. Arman, J. Aggarwal, “Model-Based Object Recognition Dense-Range Images.—A Review,” ACM Comput. Surv. 25, 5–43 (1993). [CrossRef]
  6. T. Newman, A. Jain, “A survey of automated visual inspection,” Comput. Vision Image Understand. 61, 231–262 (1995). [CrossRef]
  7. T. Kanade, “Region segmentation: signal versus semantics,” in Proceedings of the International Joint Conference on Pattern Recognition, Kyoto, Japan (1978), pp. 95–105.
  8. T. Kanade, “Region segmentation: signal versus semantics,” Comput. Graph. Image Process. 13, 279–297 (1980). [CrossRef]
  9. H.-H. Nagel, “Über die repräsentation von wissen zur auswertung von bildern,” in Angewandte Szenenanalyse, J.-P. Foith, ed., Informatik-Fachberichte No. 20 (Springer-Verlag, Berlin, 1979), pp. 3–21. [CrossRef]
  10. P. Graebling, C. Boucher, Ch. Daul, E. Hirsch, “3D sculptured surface analysis using a structured light approach,” in Videometrics IV, S. El-Hakim, ed., Proc. SPIE2598, 15–139 (1995). [CrossRef]
  11. E. Hirsch, P. Graebling, “Vision based on-line inspection of manufactured parts: advanced concepts for quantitative quality control, standardization and integration aspects,” in Proc. IMS - Int. Conf. on Rapid Product Development, FPF, Stuttgart, Germany (1994), pp. 147–158.
  12. R. Y. Tsai, “A versatile camera calibration technique for high accuracy 3D machine vision metrology using of the shelf TV cameras and lenses,” IEEE Trans. Rob. Autom. RA-3, 323–344 (1987).
  13. R. Benjemaa, F. Schmitt, “Recalage global de plusieurs surfaces par une approche algébrique,” in 11ème Congrès Reconnaissance des Formes et Intelligence Artificielle, RFIA’98, 20-17 Janvier, LASMEA, Clermont-Ferrand, France (1998), pp. 227–396.
  14. R. Bergevin, D. Laurendeau, D. Poussart, “Registering range views of multipart objects,” Comput. Vision Image Understand. 61, 1–16 (1995). [CrossRef]
  15. R. Bergevin, M. Soucy, H. Gagnon, D. Laurendeau, “Towards a general multi-view registration technique,” IEEE Trans. Pattern Anal. Mach. Intell. 15, 540–547 (1996). [CrossRef]
  16. P. Besl, N. Mc Kay, “A model for registration of 3D shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992). [CrossRef]
  17. G. Blais, M. Levine, “Registering multiview range data to create 3D computer objects,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 820–818 (1995). [CrossRef]
  18. L. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 18, 325–376 (1992). [CrossRef]
  19. Y. Chen, G. Medioni, “Object modelling by registration of multiple range images,” Image Vision Comput. 10, 145–155 (1992). [CrossRef]
  20. C. Dorai, G. Wang, A. Jain, C. Mercer, “Registration and integration of multiple object views for 3D model construction,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 83–89 (1998). [CrossRef]
  21. A. Goshtbasy, “Three-dimensional model construction from multiview range images: survey with new results,” Pattern Recogn. 31, 1405–1414 (1998).
  22. Z. Zhang, “Iterative point matching for registration of free-form curves and surfaces,” Int. J. Comput. Vision 13(2), 119–152 (1994). [CrossRef]
  23. D. Zhou, “Application de la comparaison d’images réelles et conceptuelles à l’extraction contrôlée d’indices images et à la métrologie dimensionnelle,” Ph.D. dissertation (Université Louis Pasteur, Strasbourg, France, February2000).
  24. Ch. Schoenenberger, P. Graebling, E. Hirsch, “Acquisition and 3D registration of image sequences for structured light based free-form surface reconstruction,” in Proceedings of the IX European Signal Processing Conference, S. Theodaris, I. Pitas, A. Stouraikis, N. Kalouptsidis, eds. Rhodes Island, Greece, (Typorama Editions, Patras, Greece, 1998), Vol. III, pp. 1281–1284.
  25. B. Horn, “Closed-form solution of absolute orientation using unit quaternions,” J. Opt. Soc. Am. A, 4, 629–642 (1987). [CrossRef]
  26. M. Walker, L. Shao, R. Volz, “Estimating 3D location parameters using dual number quaternions,” Comput. Vision Image Understand. 54, 358–367 (1991). [CrossRef]
  27. K. Arun, T. Huang, S. Blostein, “Least squares fitting of two 3D points sets,” IEEE Trans. Pattern Anal. Mach. Intell. 9, 698–700 (1987). [CrossRef] [PubMed]
  28. A. Lorusso, D. W. Eggert, R. B. Fisher, “A comparison of four algorithms for estimating 3-d rigid transformation,” in Proceedings of the 6th British Machine Vision Conference (BMVC’95), D. Pycock, ed. (BMVA Press, Edinburgh, UK, 1995), pp. 237–246.
  29. A. Fleming, “Geometric relationships between toleranced features,” Artif. Intell. 37, 403–423 (1988). [CrossRef]
  30. J. Guilford, J. Turner, “Representational primitives for geometric tolerancing,” Comput. Aided Des. 25, 577–586 (1993). [CrossRef]
  31. N. P. Juster, “Modeling and representation of dimensions and tolerances: a survey,” Comput. Aided Des., 24, 25–237 (1992). [CrossRef]
  32. A. A. G. Requicha, “Toward a theory of geometric tolerancing,” Int. J. Rob. Res. 24, 45–60 (1983). [CrossRef]
  33. A. A. G. Requicha, S. C. Chan, “Representation of geometric features, tolerances, and attributes in solid modellers based on constructive geometry,” IEEE Trans. Rob. Autom. RA-24, 2356–2366 (1986).
  34. L. Rivest, C. Fortin, C. Morel, “Tolerancing a solid model with a kinematic formulation,” Comput. Aided Des. 26, 465–476 (1994). [CrossRef]
  35. U. Roy, C. R. Liu, “Integrated CAD frameworks: Tolerance representation scheme in a solid model,” Comput. Indus. Eng. 24, 495–509 (1993). [CrossRef]
  36. G. H. Tarbox, S. N. Gottschlich, “IVIS: An integrated volumetric inspection system,” Comput. Vision Image Understand. 61, 430–444 (1995). [CrossRef]
  37. C. Boucher, C. Daul, P. Graebling, E. Hirsch, “KBED: A knowledge-based edge detection system,” in Database and Expert System Applications, N. Revelle, A. M. Tjoa, eds., Lectures Notes in Computer Sciences No. 978 (Springer-Verlag, Berlin, 1995), pp. 344–353. [CrossRef]
  38. C. Boucher, “Système à base de connaissances pour la détection contrôlée des contours dans des images à niveaux de gris,” Ph.D. dissertation (Université Louis Pasteur, Strasbourg, France, July1996).
  39. G. Farin, “Curves and surfaces for CAGD: a practical guide,” 4th ed. (Academic, San Diego, Calif., 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited