OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 14 — May. 10, 2002
  • pp: 2686–2694

Misalignment tolerance analysis of free-space optical interconnects via statistical methods

Nur S. F. Ozkan, W. Lee Hendrick, Philippe J. Marchand, and Sadik C. Esener  »View Author Affiliations

Applied Optics, Vol. 41, Issue 14, pp. 2686-2694 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (145 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



System-level packaging is one of the critical issues that need to be addressed for free space optical interconnections (FSOI) to become useful in desktop systems. The performance of FSOI, e.g., in terms of system bit-error rate, is greatly affected by misalignments in the optical system. Therefore tolerancing, i.e., the ability to analyze and predict the effects of misalignments in the system, is of prime importance to system designers. We introduce an approach in which we study the effects of optical misalignments and other tolerance factors using statistical methods. We use Monte Carlo simulations, design of the experiments, and regression techniques to fit a polynomial equation that expresses the relationship between the system performance and the tolerance factors. This prediction model can be used for design, cost optimization, and quality control purposes. In addition, we perform a sensitivity analysis to determine those tolerance variables that have the greatest effect on system performance.

© 2002 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(060.4510) Fiber optics and optical communications : Optical communications
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(230.0230) Optical devices : Optical devices
(250.0250) Optoelectronics : Optoelectronics

Original Manuscript: July 27, 2001
Revised Manuscript: February 14, 2002
Published: May 10, 2002

Nur S. F. Ozkan, W. Lee Hendrick, Philippe J. Marchand, and Sadik C. Esener, "Misalignment tolerance analysis of free-space optical interconnects via statistical methods," Appl. Opt. 41, 2686-2694 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between electrical and free-space optical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988). [CrossRef] [PubMed]
  2. M. R. Feldman, C. C. Guest, T. J. Drabik, S. C. Esener, “Comparison between electrical and free-space optical interconnects for fine grain processor arrays based on connection density capabilities,” Appl. Opt. 28, 3820–3829 (1989). [CrossRef] [PubMed]
  3. F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks.” J. Lightwave Technol. 9, 1674–1692 (1991). [CrossRef]
  4. A. V. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, “Grain-size consideration for opto-electronic multistage interconnection network,” Appl. Opt., 31, 5480–5507 (1992). [CrossRef] [PubMed]
  5. S. Patra, J. Ma, V. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,”Optical Engineering, May1994, Vol. 33, No.5, 1561
  6. D. Zaleta, S. Patra, V. Ozguz, J. Ma, S. H. Lee, “Tolerancing of board-level-free-space optical interconnects,” Appl. Opt. 35, 1317–13271996. [CrossRef] [PubMed]
  7. A. Krishnamoorthy, D. A. B. Miller, “Scaling opto-electronic-VLSI circuits into 21st century: a technology roadmap,” IEEE JST in Quant. El.2, 55–76 (1996). [CrossRef]
  8. V. N. Morozov, L. Yung-Cheng, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems packaging,” Optical Engineering 35, 2034–2044 (1996). [CrossRef]
  9. D. A. B. Miller, “Physical reasons for optical interconnection,” Intl. J. Optoelectronics. 11, 155–168 (1997).
  10. G. Yayla, P. Marchand, S. Esener, “Speed and energy analysis of digital interconnections: Comparison of on-chip, off-chip, and free-space technologies, Appl. Opt. 37, 205–227 (1998). [CrossRef]
  11. M. A. Neifeld, R. K. Kostuk, “Error correction for free-space optical interconnects: space-time resource optimization,” Appl. Opt. 37, 296–307 (1998). [CrossRef]
  12. W. L. Hendrick, N. S. F. Ozkan, P. J. Marchand, S. C. Esener, “A Monte Carlo simulation for tolerancing microbeam free-space optical interconnects,” in Optics in Computing, of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 133–135.
  13. X. Zheng, P. J. Marchand, D. Huang, O. Kibar, N. S. F. Ozkan, S. C. Esener, “Optomechanical design and characterization of a printed-circuit-board-based free-space optical interconnect package,” Appl. Opt. 38, 5631–5640 (1999). [CrossRef]
  14. V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999). [CrossRef]
  15. W. L. Hendrick, “Design, fabrication, and packaging of free space optical interconnects,” Ph.D. dissertation, (University of California, San Diego, Calif., 2000)
  16. M. Naruse, M. Ishikawa, “Analysis and characterization of alignment for free-space optical interconnects based on singular-value decomposition,” Appl. Opt. 39, 293–301 (2000). [CrossRef]
  17. F. Lacroix, M. Chateauneuf, X. Xue, A. G. Kirk, “Experimental and numerical analyses of misalignment tolerances in free-space optical interconnects,” Appl. Opt. 39, 704–713 (2000). [CrossRef]
  18. F. Lacroix, A. G. Kirk, “Tolerance stackup effects in free-space optical interconnects,” Appl. Opt. 40, 29, 5240–5247 (2001). [CrossRef]
  19. B. R. Frieden, Probability, Statistical Optics, and Data Testing, 3rd ed., (Springer, New York, 2001). [CrossRef]
  20. Ron C. Mittelhammer, Mathematical Statistics for Economics and Business (Springer, New York, 1996). [CrossRef]
  21. J. Neter, M. H. Kutner, C. J. Nachtsheim, W. Wasserman, Applied Linear Statistical Models (Mc Graw-Hill, New York, 1996).
  22. R. L. Mason, R. F. Gunst, J. L. Hess, Statistical Design and Analysis of Experiments (John Wiley and Sons, New York, 1989).
  23. L. L. Lapin, Quantitative Methods for Business Decisions (Harcourt Brace Jovanovich, Inc., San Diego, Calif., 1981).
  24. G. E. P. Box, W. G. Hunter, J. S. Hunter, Statistics for Experimenters (John Wiley and Sons, New York, 1978).
  25. R. H. Myers, Response Surface Methodology (Allyn and Bacon, Inc., Boston, 1971).
  26. W. Mendenhall, Introduction to Linear Models and the Design and Analysis of Experiments (Wadsworth Publishing Co., Belmont, Calif., 1968).
  27. N. R. Draper, H. Smith, Applied Regression Analysis (John Wiley and Sons, Inc.New York, 1966).
  28. D. R. Cox, Planning of Experiments (John Wiley and Sons, New York, 1966).
  29. O. L. Davies, ed., The Design and Analysis of Industrial Experiments (Hafner Publishing Co., New York, 1963).
  30. M. Sasieni, A. Yaspan, L. Freidmen, Operations Research: Methods and Problems (John Wiley and Sons, Inc., New York, 1959).
  31. W. G. Cochran, G. M. Cox, Experimental Designs (John Wiley and Sons, New York, 1957).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited