OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 15 — May. 20, 2002
  • pp: 2705–2714

Optimization of a semianalytical ocean color model for global-scale applications

Stéphane Maritorena, David A. Siegel, and Alan R. Peterson  »View Author Affiliations


Applied Optics, Vol. 41, Issue 15, pp. 2705-2714 (2002)
http://dx.doi.org/10.1364/AO.41.002705


View Full Text Article

Enhanced HTML    Acrobat PDF (261 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Semianalytical (SA) ocean color models have advantages over conventional band ratio algorithms in that multiple ocean properties can be retrieved simultaneously from a single water-leaving radiance spectrum. However, the complexity of SA models has stalled their development, and operational implementation as optimal SA parameter values are hard to determine because of limitations in development data sets and the lack of robust tuning procedures. We present a procedure for optimizing SA ocean color models for global applications. The SA model to be optimized retrieves simultaneous estimates for chlorophyll (Chl) concentration, the absorption coefficient for dissolved and detrital materials [acdm(443)], and the particulate backscatter coefficient [b bp (443)] from measurements of the normalized water-leaving radiance spectrum. Parameters for the model are tuned by simulated annealing as the global optimization protocol. We first evaluate the robustness of the tuning method using synthetic data sets, and we then apply the tuning procedure to an in situ data set. With the tuned SA parameters, the accuracy of retrievals found with the globally optimized model (the Garver-Siegel-Maritorena model version 1; hereafter GSM01) is excellent and results are comparable with the current Sea-viewing Wide Field-of-view sensor (SeaWiFS) algorithm for Chl. The advantage of the GSM01 model is that simultaneous retrievals of acdm(443) and b bp (443) are made that greatly extend the nature of global applications that can be explored. Current limitations and further developments of the model are discussed.

© 2002 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics

History
Original Manuscript: May 23, 2001
Revised Manuscript: December 12, 2001
Published: May 20, 2002

Citation
Stéphane Maritorena, David A. Siegel, and Alan R. Peterson, "Optimization of a semianalytical ocean color model for global-scale applications," Appl. Opt. 41, 2705-2714 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-15-2705


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103 (C11), 24937–24953 (1998). [CrossRef]
  2. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters), “J. Geophys. Res. 93 (C9), 10749–10768 (1988). [CrossRef]
  3. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93 (D9), 10909–10924 (1988). [CrossRef]
  4. C. S. Roesler, M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100 (C7), 13279–13294 (1995). [CrossRef]
  5. S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. I. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18607–18625 (1997). [CrossRef]
  6. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104 (C3), 5403–5421 (1999). [CrossRef]
  7. R. A. Reynolds, D. Stramski, B. G. Mitchell, “A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean,” J. Geophys. Res. 106 (C4), 7125–7138 (2001). [CrossRef]
  8. A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106 (C4), 7163–7180 (2001). [CrossRef]
  9. A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103 (C13), 31033–31044 (1998). [CrossRef]
  10. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. 2. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  11. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, San Diego, Calif., 1974), pp. 1–24.
  12. K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, B. G. Mitchell, “Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products,” J. Geophys. Res. 96, 20599–20611 (1991). [CrossRef]
  13. N. B. Nelson, D. A. Siegel, A. F. Michaels, “Seasonal dynamics of colored dissolved material in the Sargasso Sea,” Deep-Sea Res. I 45, 931–957 (1998). [CrossRef]
  14. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter in the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981). [CrossRef]
  15. S. A. Green, N. V. Blough, “Optical-absorption and fluorescence properties of chromophoric dissolved organic-matter in natural waters,” Limnol. Oceanogr 39, 1903–1916 (1994). [CrossRef]
  16. R. W. Austin, “Inherent spectral radiance signatures of the ocean surface. Part 2: Ocean color analysis,” S. W. Duntley, R. W. Austin, W. H. Wilson, C. F. Edgerton, S. E. Moran, eds., SIO Ref. 74–10 (Scripps Institution of Oceanography, La Jolla, Calif., 1974).
  17. H. R. Gordon, “Ocean color remote sensing: influence of the particle phase function and the solar zenith angle,” EOS Trans. Am. Geophys. Union 14, 1055 (1986).
  18. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991). [CrossRef] [PubMed]
  19. A. Morel, B. Gentili, “Diffuse reflectance of oceanic water. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  20. W. H. Press, S. A. Teukolsky, W. T. Vettering, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).
  21. S. A. Garver, “Variability in ocean color observations and their use in the study of upper ocean ecosystem dynamics,” Ph.D. dissertation (University of California, Santa Barbara, Santa Barbara, Calif., 1997).
  22. J. A. Nelder, R. Mead, “A simplex method for function minimization,” Computer J. 7, 308–313 (1965). [CrossRef]
  23. L. Gross, S. Thiria, R. Frouin, B. G. Mitchell, “Artificial neural networks for modeling the transfer function between marine reflectance and phytoplankton pigment concentration,” J. Geophys. Res. 105 (C2), 3483–3495 (2000). [CrossRef]
  24. J. E. O’Reilly, S. Maritorena, M. C. O’Brien, D. A. Siegel, D. Toole, D. Menzies, R. C. Smith, J. L. Mueller, B. G. Mitchell, M. Kahru, R. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Mueller-Karger, L. Harding, A. Magnusion, D. Phynney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, NASA Tech. Memo. 2000-206892, Vol. 11, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  25. S. B. Hooker, C. R. McClain, J. K. Firestone, T. L. Westphal, E.-N. Yeh, Y. Ge, The SeaWiFS Bio-Optical Archive and Storage System (SeaBASS). Part 1, NASA Tech. Memo. 104566, Vol. 20 (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).
  26. D. A. Siegel, A. F. Michaels, “Quantification of non-algal light attenuation in the Sargasso Sea: implications for biogeochemistry and remote sensing,” Deep-Sea Res. II 43, 321–345 (1996). [CrossRef]
  27. D. A. Toole, D. A. Siegel, “Modes and mechanisms of ocean color variability in the Santa Barbara Channel,” J. Geophys. Res. 106 (C11), 26985–27000 (2001). [CrossRef]
  28. H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998). [CrossRef]
  29. J. T. O. Kirk, “Monte Carlo study of the nature of the underwater light field in and the relationships between opticals properties of turbid yellow waters,” Aust. J. Mar. Freshwater Res. 32, 517–532 (1981). [CrossRef]
  30. C. R. McClain, R. A. Barnes, R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, P. J. Werdell, SeaWiFS Postlaunch Calibration and Validation Analyses, Part 2, NASA Tech. Memo. 2000-206892, Vol. 10, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., (2000).
  31. D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, M. Lorenzi-Kayser, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. (to be published).
  32. For further information, see http://seawifs.gsfc.nasa.gov/ cgibrs/level3.pl .
  33. K. Baith, R. Lindsay, G. Fu, C. R. McClain, “Data analysis system developed for ocean color satellite sensors,” EOS Trans. 82, 202–000 (2001). [CrossRef]
  34. N. Hoepffner, S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption-spectra of total particulate matter. J. Geophys. Res. 98 (C12), 22789–22803 (1993). [CrossRef]
  35. R. Aguirre-Gómez, A. R. Weeks, S. R. Boxall, “The identification of phytoplankton pigments from absorption spectra,” Int. J. Remote Sens. 22, 315–338 (2001). [CrossRef]
  36. O. Ulloa, S. Sathyendranath, T. Platt, “Effect of the particle-size distribution on the backscattering ratio in seawater,” Appl. Opt. 33, 7070–7077 (1994). [CrossRef] [PubMed]
  37. N. B. Nelson, D. A. Siegel, “Distribution and dynamics of chromophoric dissolved organic matter (CDOM) in the open ocean, in Biogeochemistry of Marine Dissolved Organic Matter, D. A. Hansell, C. A. Carlson eds. (Academic, San Diego, Calif., 2002).
  38. G. Fargion, C. R. McClain, SIMBIOS Project 2000 Annual Report, NASA Tech. Memo. 2001-209976 (NASA Goddard Space Flight Center, Greenbelt, Md., 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited