OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 15 — May. 20, 2002
  • pp: 2715–2723

Analysis of the receiver response for a noncoaxial lidar system with fiber-optic output

Giorgos Chourdakis, Alexandros Papayannis, and Jacques Porteneuve  »View Author Affiliations


Applied Optics, Vol. 41, Issue 15, pp. 2715-2723 (2002)
http://dx.doi.org/10.1364/AO.41.002715


View Full Text Article

Acrobat PDF (232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The return signal of a noncoaxial lidar system with fiber-optic output is examined. The dependence of the overlap regions and the overlap factor of the system on the fiber diameter is calculated for several inclination angles between the laser beam and the optical receiver axes. The effect of central obstruction is included and both cases of Gaussian and quasi-Gaussian laser beam profiles are treated. The irradiance spatial distribution on the focal plane of the system is calculated and experimentally determined. Finally, an alignment procedure of the lidar system is described based on the comparison between the range-corrected lidar signal and the range-corrected exponentially attenuated Rayleigh backscattered coefficient.

© 2002 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.3640) Atmospheric and oceanic optics : Lidar
(060.2310) Fiber optics and optical communications : Fiber optics
(210.3820) Optical data storage : Magneto-optical materials
(220.2740) Optical design and fabrication : Geometric optical design
(290.1350) Scattering : Backscattering

Citation
Giorgos Chourdakis, Alexandros Papayannis, and Jacques Porteneuve, "Analysis of the receiver response for a noncoaxial lidar system with fiber-optic output," Appl. Opt. 41, 2715-2723 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-15-2715


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Oceanic Technol. 17, 1469–1482 (2000).
  2. P. D. W. Girolamo, P. F. Ambrico, A. Amodeo, A. Boselli, G. Pappalardo, and N. Spinelli, “Aerosol observations by lidar in the nocturnal boundary layer,” Appl. Opt. 38, 4585–4595 (1999).
  3. E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, and J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).
  4. P. Hägeli, D. G. Steyn, and K. B. Strawbridge, “Spatial and temporal variability of mixed-layer depth and entrainment zone thickness,” Boundary-Layer Meteorol. 97, 47–71 (2000).
  5. P. E. Raj, P. C. S. Devara, R. S. Maheskumar, G. Pandithurai, and K. K. Dani, “Lidar measurements of aerosol column content in an urban nocturnal boundary layer,” Atmos. Res. 45, 201–216 (1997).
  6. I. G. McKendry and J. Lundgren, “Tropospheric layering of ozone in regions of urbanized complex and/or coastal terrain: a review,” Prog. Phys. Geogr. 24, 329–354 (2000).
  7. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1984).
  8. J. Riegl and M. Bernhard, “Empfangsleistung in Abhängigkeit von der Zielentfernung bei optischen Kurzstrecken-Radargeräten,” Appl. Opt. 13, 931–936 (1974).
  9. T. Halldorsson and J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
  10. Y. Sasano, H. Shimizu, N. Takeuchi, and M. Okuda, “Geometrical form factor in the laser radar equation: an experimental determination,” Appl. Opt. 18, 3908–3910 (1979).
  11. H. Kuze, H. Kinjo, Y. Sakurada, and N. Takeuchi, “Field-of-view dependence of lidar signals by use of Newtonian and Cassegrainian telescopes,” Appl. Opt. 37, 3128–3132 (1998).
  12. R. Velotta, B. Bartoli, R. Capobianco, L. Fiorani, and N. Spinelli, “Analysis of the receiver response in lidar measurements,” Appl. Opt. 37, 6999–7007 (1998).
  13. U. Wandinger and A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41, 511–514 (2002).
  14. J. Harms, W. Lahmann and C. Weitkamp, “Geometrical compression of lidar return signals,” Appl. Opt. 17, 1131–1135 (1978).
  15. J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979).
  16. J. R. Jenness, D. B. Lysak, and C. R. Philbrick, “Design of a lidar receiver with fiber-optic output,” Appl. Opt. 36, 4278–4284 (1997).
  17. A. Papayannis, G. Tsaknakis, G. Chourdakis, and A. Serafetinides, “Compact mobile lidar system based on the LabVIEW code: applications in urban air pollution monitoring in Athens, Greece,” in Enviromental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schaefer, K. Weber, K. Weitkamp, J. P. Wolf, and L. Woppowa, eds., Proc. SPIE 3821, 19–28 (1999).
  18. R. K. Nubling and J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997).
  19. Y-W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, and H. Uyama, “Cyclic olefin polymer-coated silver hollow glass waveguides for the infrared,” Appl. Opt. 37, 7758–7762 (1998).
  20. N. Anastasopoulou, C. Ziolek, A. Serafetinides, and H. Lubatschowski, “Q-switched Er:YAG radiation transmission through fluoride glass fibers and dielectric-coated metallic hollow waveguides,” Opt. Commun. 186, 167–171 (2000).
  21. S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Opt. 36, 9075–9082 (1997).
  22. T. Abel, J. Hirsch, and J. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
  23. W. Koechner, Solid-State Laser Engineering, Vol. 1 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1999).
  24. R. Borghi and M. Santarsiero, “M2 factor of Bessel–Gauss beams,” Opt. Lett. 22, 262–264 (1997).
  25. U.S. 1974 Standard Atmosphere (U.S. GPO Washington, D.C., 1976), p. 227.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited