OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 15 — May. 20, 2002
  • pp: 2781–2790

Development of a Multiwavelength Aerosol and Water-Vapor Lidar at The Jungfraujoch Alpine Station (3580 m Above Sea Level) in Switzerland

Gilles Larchevêque, Ioan Balin, Remo Nessler, Philippe Quaglia, Valentin Simeonov, Hubert van den Bergh, and Bertrand Calpini  »View Author Affiliations


Applied Optics, Vol. 41, Issue 15, pp. 2781-2790 (2002)
http://dx.doi.org/10.1364/AO.41.002781


View Full Text Article

Acrobat PDF (1626 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Jungfraujoch Research Station (46.55°N, 7.98°E, 3580 m above sea level) for decades has contributed in a significant manner to the systematic observation of the Earth’s atmosphere both with <i>in situ</i> measurements and with trace gas column detection. We report on the development of a lidar system that improves the measurement potential of highly resolved atmospheric parameters in both time and space, with the goal of achieving long-term monitoring of atmospheric aerosol optical properties and water-vapor content. From the simultaneously detected elastic-backscatter signals at 355, 532, and 1064 nm, Raman signals from nitrogen at 387 and 607 nm, and water vapor at 408 nm, the aerosol extinction and backscatter coefficients at three wavelengths and a water-vapor mixing ratio are derived. Additional information about particle shape is obtained by depolarization measurements at 532 nm. Water-vapor measurements by use of both nitrogen and water-vapor Raman returns from the 355-nm laser beam are demonstrated with a vertical range resolution of 75 m and an integration time of 2 h. The comparison to the water-vapor profile derived from balloon measurements (Snow White technique) showed excellent agreement. The system design and the results obtained by its operation are reported.

© 2002 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7030) Atmospheric and oceanic optics : Troposphere

Citation
Gilles Larchevêque, Ioan Balin, Remo Nessler, Philippe Quaglia, Valentin Simeonov, Hubert van den Bergh, and Bertrand Calpini, "Development of a Multiwavelength Aerosol and Water-Vapor Lidar at The Jungfraujoch Alpine Station (3580 m Above Sea Level) in Switzerland," Appl. Opt. 41, 2781-2790 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-15-2781


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. International Panel for Climate Change, “Climate change 2001—the scientific basis,” available at www.ipcc.ch.
  2. R. J. Charlson and J. Heintzenberg, ed., Aerosol Forcing of Climate (Wiley, New York, 1995).
  3. J. Houghton, Global Warming: The Complete Briefing (Cambridge U. Press, Cambridge, England, 1997).
  4. M. T. Chahine, “The hydrological cycle and its influence on climate,” Nature 359, 373–380 (1992).
  5. D. O. Starr and S. H. Melfi, ed., The Role of Water Vapor in Climate: A Strategic Research Plan for the Proposed GEWEX, Water Vapor Project (GVaP), NASA Conf. Publ. CP-3120 (NASA, Hanover, Md., 1991).
  6. D. Rind, “Just add water vapor,” Nature 281, 1152–1153 (1998).
  7. J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hagard, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, J. Pelon, C. Loth, and A. Dabas, eds. (Editions de l’École polytechnique, Palaiseau, France, 2001), pp. 155–158.
  8. J. Bösenberg, ed., “EARLINET scientific report, February 2000 to January 2001,” available at http://lidarb.dkrz.de/earlinet/scirepl.pdf.
  9. U. Baltensperger, H. W. Gäggeler, D. T. Jost, M. Lugauer, M. Schwikowski, E. Weingartner, and P. Seibert, “Aerosol climatology at high-alpine site Jungfraujoch, Switzerland,” J. Geophys. Res. D102, 19707–19715 (1997).
  10. L. Delbouille and G. Roland, “High-resolution solar and atmospheric spectroscopy from the Jungfraujoch high-altitude station,” Opt. Eng. 34, 2736–2739 (1995).
  11. M. de Mazière, M. van Roozendael, C. Hermans, P. C. Simon, P. Demoulin, and G. Roland, “Quantitative evaluation of the post-Pinatubo NO2 reduction and recovery, based on 10 years of FTIR and UV-visible spectroscopic measurements at the Jungfraujoch,” J. Geophys. Res. 103, 10849–10858 (1998).
  12. A. Heimo, R. Philipona, C. Fröhlich, C. Marty, and A. Ohmura, “The Swiss atmospheric radiation monitoring network CHARM,” in Proceedings of the WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation (World Meteorological Organization, Geneva, Switzerland, 1998).
  13. D. Maier, N. Kämpfer, W. Amacher, M. Wüthrich, J. de la Noe, P. Ricaud, P. Baron, G. Beaudin, C. Viguerie, J.-R. Pardo, J. D. Gallego, A. Barcia, J. Cernicharo, B. Ellison, R. Siddans, D. Matheson, K. Künzi, U. Klein, B. Franke, J. Louhi, J. Mallat, M. Gustafsson, A. Räisänen, and A. Karpov, “EMCOR radiometer: calibration and first tests,” in Microwave Remote Sensing of the Atmosphere and Environment, T. Hayasaka, D. L. Wu, Y.-Q. Jin, J.-S. Jiang, eds., Proc. SPIE 3503, pp. 362–374.
  14. W. B. Grant, E. Browell, R. T. Menzies, K. Sassen, and C. Y. She, ed., Selected Papers on Laser Applications in Remote Sensing (SPIE, Bellingham, Wash. 1997).
  15. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, New York, 1992).
  16. F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
  17. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
  18. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
  19. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. 55, 18–28 (1992).
  20. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
  21. S. R. Pal and A. I. Carswell, “Polarization properties of lidar backscattering from clouds,” Appl. Opt. 12, 1530–1535 (1973).
  22. W. R. McNeil and A. I. Carswell, “Lidar polarization studies of the troposphere,” Appl. Opt. 14, 2158–2168 (1975).
  23. C. Böckmann and J. Wauer, “Algorithms for the inversion of light scattering data from uniform and non-uniform particles,” Aerosol Sci. 32, 49–61 (2001).
  24. C. Böckmann, “Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distribution,” Appl. Opt. 40, 1329–1342 (2001).
  25. V. Simeonov, G. Larchevêque, P. Quaglia, H. Van den Bergh, and B. Calpini, “The influence of the photomultiplier spatial uniformity on lidar signals,” Appl. Opt. 38, 5186–5190 (1999).
  26. S. Nyeki, U. Baltensperger, I. Colbeck, D. T. Jost, E. Weingartner, and H. W. Gäggeler, “The Jungfraujoch high-alpine research station (3454 m) as a background clean continental site for the measurement of aerosol parameters,” J. Geophys. Res. 103, 6097–6107 (1998).
  27. J. M. Vaughan, N. J. Geddes, P. H. Flamant, and C. Flesia, Establishment of a Backscatter Coefficient and Atmospheric Database (Defence Evaluation and Research Agency UK, Farnborough, UK, 1998).
  28. United States Committee on Extension to the Standard Atmosphere, U.S. Standard Atmosphere, (National Oceanic and Atmospheric Administration, Washington, D.C., 1976).
  29. A. Papayannis, V. Amoiridis, J. Baldasano, J. Balin, D. Balis, A. Boselli, A. Chaikovsky, B. Chatenet, G. Chourdakis, V. Freudenthaler, M. Frioux, J. Herman, M. Iarlori, S. Kreipl, G. Larchevêque, R. Matthey, I. Mattis, D. Müller, M. Pandolfi, G. Pappalardo, J. Pelon, M. R. Perrone, V. Rizi, A. Rodriguez, L. Sauvage, P. Sobolewski, N. Spinelli, F. de Tomasi, T. Trickl, and M. Wiegner, “Continental-scale vertical profile measurements of free tropospheric Saharan dust particles performed by a coordinated ground-based European lidar network (EARLINET project),” submitted to J. Geophys. Res.
  30. F. Theopold and J. Bosenberg, “Evaluation of DIAL measurement in presence of signal noise,” in Proceedings of the 14th International Laser Radar Conference (Istituto di Ricerca sulle Onde Elettromagnetiche, Consiglio Nazionale delle Ricerche, Florence, Italy, 1988).
  31. S. Godin, A. I. Carswell, D. P. Donovan, H. Claude, W. Steinbrecht, I. S. McDermid, T. J. McGee, M. R. Gross, H. Nakane, D. P. J. Swart, H. B. Bergwerff, O. Uchino, P. von der Gathen, and R. Neuber, “Ozone differential absorption lidar algorithm intercomparison,” Appl. Opt. 38, 6225–6236 (1999).
  32. P. B. Russell, T. J. Swissler, and M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979).
  33. J. Taylor, An Introduction to Error Analysis: the Study of Uncertainties in Physical Measurements (University Science, Sausalito, Calif. 1997).
  34. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
  35. D. N. Whiteman, K. D. Evans, B. Demoz, D. O. C. Starr, D. C. Tobin, W. E. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, and F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2000).
  36. J. Bosenberg, “Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
  37. E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1976).
  38. I. Balin, G. Larchevêque, P. Quaglia, V. Simeonov, H. van den Bergh, and B. Calpini, “Water vapor profile by Raman lidar in the free troposphere from the Jungfraujoch Alpine Station,” in Advances in Global Change Research, M. Beniston, ed., (Kluwer Academic, Dordrecht, 2001), Vol. 10, pp. 123–138.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited