OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 15 — May. 20, 2002
  • pp: 2781–2790

Development of a multiwavelength aerosol and water-vapor lidar at the Jungfraujoch Alpine Station (3580 m above sea level) in Switzerland

Gilles Larchevêque, Ioan Balin, Remo Nessler, Philippe Quaglia, Valentin Simeonov, Hubert van den Bergh, and Bertrand Calpini  »View Author Affiliations


Applied Optics, Vol. 41, Issue 15, pp. 2781-2790 (2002)
http://dx.doi.org/10.1364/AO.41.002781


View Full Text Article

Enhanced HTML    Acrobat PDF (1626 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Jungfraujoch Research Station (46.55°N, 7.98°E, 3580 m above sea level) for decades has contributed in a significant manner to the systematic observation of the Earth’s atmosphere both with in situ measurements and with trace gas column detection. We report on the development of a lidar system that improves the measurement potential of highly resolved atmospheric parameters in both time and space, with the goal of achieving long-term monitoring of atmospheric aerosol optical properties and water-vapor content. From the simultaneously detected elastic-backscatter signals at 355, 532, and 1064 nm, Raman signals from nitrogen at 387 and 607 nm, and water vapor at 408 nm, the aerosol extinction and backscatter coefficients at three wavelengths and a water-vapor mixing ratio are derived. Additional information about particle shape is obtained by depolarization measurements at 532 nm. Water-vapor measurements by use of both nitrogen and water-vapor Raman returns from the 355-nm laser beam are demonstrated with a vertical range resolution of 75 m and an integration time of 2 h. The comparison to the water-vapor profile derived from balloon measurements (Snow White technique) showed excellent agreement. The system design and the results obtained by its operation are reported.

© 2002 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7030) Atmospheric and oceanic optics : Troposphere

History
Original Manuscript: October 24, 2001
Revised Manuscript: February 25, 2002
Published: May 20, 2002

Citation
Gilles Larchevêque, Ioan Balin, Remo Nessler, Philippe Quaglia, Valentin Simeonov, Hubert van den Bergh, and Bertrand Calpini, "Development of a multiwavelength aerosol and water-vapor lidar at the Jungfraujoch Alpine Station (3580 m above sea level) in Switzerland," Appl. Opt. 41, 2781-2790 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-15-2781

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited