OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 15 — May. 20, 2002
  • pp: 2791–2799

Multiple-return laser radar for three-dimensional imaging through obscurations

Bradley W. Schilling, Dallas N. Barr, Glen C. Templeton, Lawrence J. Mizerka, and C. Ward Trussell  »View Author Affiliations


Applied Optics, Vol. 41, Issue 15, pp. 2791-2799 (2002)
http://dx.doi.org/10.1364/AO.41.002791


View Full Text Article

Enhanced HTML    Acrobat PDF (2261 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact imaging laser radar was constructed and tested to investigate phenomenological issues in targeting, especially cases involving imaging through obscurations such as foliage and camouflage netting. The laser radar employs a Nd:YAG microchip laser that operates at a wavelength of 1.06 µm and produces pulses of 1.2-ns duration at a 3-kHz rate. The detector is a commercial indium gallium arsenide avalanche photodiode. A single computer controls the scanning mirrors and performs the digitization of the returning signal at 2 giga samples/s. A detailed description of the laser radar is presented as well as results from field experiments that examined its range accuracy capability and its ability to image a target through camouflage. Results of data collected from deciduous tree lines are also discussed to characterize the presence and quantity of multiple returns.

© 2002 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.6880) Imaging systems : Three-dimensional image acquisition
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: November 13, 2001
Revised Manuscript: February 1, 2002
Published: May 20, 2002

Citation
Bradley W. Schilling, Dallas N. Barr, Glen C. Templeton, Lawrence J. Mizerka, and C. Ward Trussell, "Multiple-return laser radar for three-dimensional imaging through obscurations," Appl. Opt. 41, 2791-2799 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-15-2791


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978). [CrossRef] [PubMed]
  2. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar,” Appl. Opt. 21, 2275–2286 (1982). [CrossRef] [PubMed]
  3. H. Ahlberg, S. Lundqvist, B. Olsson, “CO2 laser long-path measurements of diffuse leakages from a petrochemical plant,” Appl. Opt. 24, 3924–3928 (1985). [CrossRef]
  4. A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992). [CrossRef] [PubMed]
  5. C. B. Carlisle, J. E. van der Laan, L. W. Carr, P. Adam, J.-P. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6200 (1995). [CrossRef] [PubMed]
  6. T. J. Kane, W. J. Kozlovsky, R. L. Byer, C. E. Byvik, “Coherent laser radar at 1.06 µm using Nd:YAG lasers,” Opt. Lett. 12, 239–241 (1987). [CrossRef] [PubMed]
  7. A. N. Dills, G. Anderson, R. J. Knise, “Holographic Raman/Rayleigh lidar for all-atmosphere thermal profiles,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 186–193 (2001). [CrossRef]
  8. J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000). [CrossRef]
  9. C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000). [CrossRef]
  10. B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996). [CrossRef]
  11. A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1991).
  12. R. W. Byren, “Laser rangefinders,” in The Infrared and Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich. and SPIE, Bellingham, Wash.1993).
  13. T. N. Dreishuh, L. L. Gurdev, D. V. Stoyanov, “Effect of pulse-shape uncertainty on the accuracy of deconvolved lidar profiles,” J. Opt. Soc. Am. A 12, 301–306 (1995). [CrossRef]
  14. Y. J. Park, W. S. Dho, H. J. Kong, “Deconvolution of long-pulse lidar signals with matrix formulation,” Appl. Opt. 36, 5158–5161 (1997). [CrossRef] [PubMed]
  15. C. W. Trussell, “3D imaging for Army applications,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 126–131 (2001). [CrossRef]
  16. Q. Zheng, S. Der, H. Mahmoud, “Model-based target recognition in pulsed ladar imagery,” IEEE Trans. Image Process. 10, 565–572 (2001). [CrossRef]
  17. J. E. Nettleton, B. W. Schilling, D. N. Barr, J. S. Lei, “Monoblock laser for a low-cost, eyesafe, microlaser range finder,” Appl. Opt. 39, 2428–2432 (2000). [CrossRef]
  18. S. D. Setzler, P. A. Budni, E. P. Chicklis, “A high energy Q-switched erbium at 1.62 microns,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 309–311.
  19. T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.
  20. S. Masuda, S. Takahashi, T. Nose, S. Sato, H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36, 4772–4778 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited