OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 15 — May. 20, 2002
  • pp: 2818–2825

Input waveguide grating couplers designed for a desired wavelength and polarization response

Johan Backlund, Jörgen Bengtsson, Carl-Fredrik Carlström, and Anders Larsson  »View Author Affiliations


Applied Optics, Vol. 41, Issue 15, pp. 2818-2825 (2002)
http://dx.doi.org/10.1364/AO.41.002818


View Full Text Article

Enhanced HTML    Acrobat PDF (1516 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Input grating couplers are used to couple light from free space into a waveguide and can provide additional functions such as focusing and beam splitting of the light into arbitrary desired positions in the waveguide. We show that it is possible to design the couplers so that they perform different desired functions depending on the polarization or wavelength of the incident light. We demonstrate experimentally a number of couplers that may be of interest, e.g., in optical fiber communications. Examples are polarization-independent couplers, designed to have the same response for two orthogonal polarizations of the incident light, and couplers for demultiplexing in wavelength division multiplexing applications, designed to separate and focus different input wavelengths to different positions in the waveguide.

© 2002 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.3120) Integrated optics : Integrated optics devices

History
Original Manuscript: May 3, 2001
Revised Manuscript: November 14, 2001
Published: May 20, 2002

Citation
Johan Backlund, Jörgen Bengtsson, Carl-Fredrik Carlström, and Anders Larsson, "Input waveguide grating couplers designed for a desired wavelength and polarization response," Appl. Opt. 41, 2818-2825 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-15-2818


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977). [CrossRef]
  2. T. Suhara, H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. 22, 845–867 (1986). [CrossRef]
  3. J. Backlund, J. Bengtsson, C.-F. Carlström, A. Larsson, “Incoupling waveguide holograms for simultaneous focusing into multiple arbitrary positions,” Appl. Opt. 38, 5738–5746 (1999). [CrossRef]
  4. M. K. Smit, C. van Dam, “Phasar-based WDM-devices: principles, design, and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996). [CrossRef]
  5. C. G. P. Herben, C. G. M. Vreeburg, D. H. P. Maat, X. J. M. Leijtens, Y. S. Oei, F. H. Groen, J. W. Pedersen, P. Demeester, M. K. Smit, “Compact integrated InP-based single-phasar optical crossconnect,” IEEE Photon. Technol. Lett. 10, 678–680 (1998). [CrossRef]
  6. M. Li, J. Bengtsson, M. Hagberg, A. Larsson, T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996). [CrossRef]
  7. A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method, (Artech House, Boston, 1995).
  8. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  9. L. M. Walpita, “Solutions for planar optical waveguide equations by selecting zero elements in a characteristic matrix,” J. Opt. Soc. Am. A 2, 595–602 (1985). [CrossRef]
  10. J. Backlund, J. Bengtsson, C.-F. Carlström, A. Larsson, “Multifunctional grating couplers for bidirectional incoupling into planar waveguides,” IEEE Photon. Technol. Lett. 12, 314–316 (2000). [CrossRef]
  11. J. Bengtsson, “Kinoform design with an optimal-rotation-angle method,” Appl. Opt. 33, 6879–6884 (1994). [CrossRef] [PubMed]
  12. C.-F. Carlström, G. Landgren, S. Anand, “Low energy ionbeam etching of InP using methane chemistry,” J. Vac. Sci. Technol. B 16, 1018–1023 (1998). [CrossRef]
  13. M. Johansson, B. Löfving, S. Hård, L. Thylén, M. Mokhtari, U. Westergren, C. Pala, “Study of an ultrafast analog-to-digital conversion scheme based on diffractive optics,” Appl. Opt. 39, 2881–2887 (2000). [CrossRef]
  14. R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt. 36, 9383–9390 (1997). [CrossRef]
  15. P. G. Dinesen, J. S. Hesthaven, J. P. Lynov, L. Lading, “Pseudospectral method for the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 16, 1124–1130 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited