OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 15 — May. 20, 2002
  • pp: 2840–2846

Modeling of gas absorption cross sections by use of principal-component-analysis model parameters

Jimmy Bak  »View Author Affiliations


Applied Optics, Vol. 41, Issue 15, pp. 2840-2846 (2002)
http://dx.doi.org/10.1364/AO.41.002840


View Full Text Article

Enhanced HTML    Acrobat PDF (374 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Monitoring the amount of gaseous species in the atmosphere and exhaust gases by remote infrared spectroscopic methods calls for the use of a compilation of spectral data, which can be used to match spectra measured in a practical application. Model spectra are based on time-consuming line-by-line calculations of absorption cross sections in databases by use of temperature as input combined with path length and partial and total pressure. It is demonstrated that principal component analysis (PCA) can be used to compress the spectrum of absorption cross sections, which depend strongly on temperature, into a reduced representation of score values and loading vectors. The temperature range from 300 to 1000 K is studied. This range is divided into two subranges (300–650 K and 650–1000 K), and separate PCA models are constructed for each. The relationship between the scores and the temperature values is highly nonlinear. It is shown, however, that because the score-temperature relationships are smooth and continuous, they can be modeled by polynomials of varying degrees. The accuracy of the data compression method is validated with line-by-line-calculated absorption data of carbon monoxide and water vapor. Relative deviations between the absorption cross sections reconstructed from the PCA model parameters and the line-by-line-calculated values are found to be smaller than 0.15% for cross sections exceeding 1.27 × 10-21 cm-1 atm-1 (CO) and 0.20% for cross sections exceeding 4.03 × 10-21 cm-1 atm-1 (H2O). The computing time is reduced by a factor of 104.

© 2002 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature
(300.1030) Spectroscopy : Absorption
(300.6170) Spectroscopy : Spectra
(300.6340) Spectroscopy : Spectroscopy, infrared

History
Original Manuscript: June 12, 2001
Revised Manuscript: December 18, 2001
Published: May 20, 2002

Citation
Jimmy Bak, "Modeling of gas absorption cross sections by use of principal-component-analysis model parameters," Appl. Opt. 41, 2840-2846 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-15-2840

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited