OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 15 — May. 20, 2002
  • pp: 2858–2868

Numerical analysis of beam propagation in pulsed cavity ring-down spectroscopy

Scott Spuler and Mark Linne  »View Author Affiliations


Applied Optics, Vol. 41, Issue 15, pp. 2858-2868 (2002)
http://dx.doi.org/10.1364/AO.41.002858


View Full Text Article

Enhanced HTML    Acrobat PDF (759 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A numerical simulation of pulsed cavity ring-down spectroscopy (CRDS) is developed with the commercially available software package general laser analysis and design. The model is verified through a series of numerical experiments. Several issues of concern in CRDS are investigated, including spatial resolution, misalignment, non-Gaussian beam input, and the effect of flames inside a ring-down cavity. Suggestions for the design of pulsed CRDS instruments are provided.

© 2002 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(230.5750) Optical devices : Resonators
(300.0300) Spectroscopy : Spectroscopy
(300.6190) Spectroscopy : Spectrometers

History
Original Manuscript: August 8, 2001
Revised Manuscript: January 3, 2002
Published: May 20, 2002

Citation
Scott Spuler and Mark Linne, "Numerical analysis of beam propagation in pulsed cavity ring-down spectroscopy," Appl. Opt. 41, 2858-2868 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-15-2858


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 12, 2544–2551 (1988). [CrossRef]
  2. D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993). [CrossRef]
  3. G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. Parker, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994). [CrossRef]
  4. S. Cheskis, “Quantitative measurements of absolute concentrations of intermediate species in flames,” Prog. Energy Combust. Sci. 25, 233–252 (1999). [CrossRef]
  5. R. Evertsen, R. L. Stolk, J. J. Ter Meulen, “Investigations of cavity ring down spectroscopy applied to the detection of CH in atmospheric flames,” Combust. Sci. Technol. 149, 19–34 (1999). [CrossRef]
  6. X. Mercier, E. Therssen, J. F. Pauwels, P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett. 299, 75–83 (1999). [CrossRef]
  7. J. W. Thoman, A. McIlroy, “Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ringdown spectroscopy of the A2Δ-X2Π transition,” J. Phys. Chem. 104, 4953–4961 (2000). [CrossRef]
  8. C. B. Dreyer, S. Spuler, M. Linne, “Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric flames,” Combust. Sci. Technol. 171, 1–29 (2001). [CrossRef]
  9. J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278–10288 (1996). [CrossRef]
  10. G. N. Lawrence, “General Laser Analysis and Design theoretical description,” Applied Optics Research, Woodland, Wash. See http://www.aor.com .
  11. A. E. Siegman, Lasers, 1st ed. (University Science, Sausalito, Calif.1986).
  12. R. Jongma, M. Boogaarts, I. Hollwman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995). [CrossRef]
  13. J. J. L. Spaanjaars, J. J. ter Meulen, G. Meijer, “Relative predissociation rates of OH (A2 ∑+, v′ = 3) from combined cavity ring down–laser-induced fluorescence measurements,” J. Chem. Phys. 107, 2242–2248 (1997). [CrossRef]
  14. X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric flame,” Chem. Phys. Lett. 305, 334–342 (1999). [CrossRef]
  15. I. Derzy, V. A. Lozovsky, S. Cheskis, “Absorption cross-sections and absolute concentration of singlet methylene in methane/air,” Chem. Phys. Lett. 313, 121–128 (1999). [CrossRef]
  16. V. Lozovsky, S. Cheskis, “Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy,” J. Chem. Phys. 106, 8384–8391 (1997). [CrossRef]
  17. A. D. Sappey, E. S. Hill, T. Settersten, M. A. Linne, “Fixed frequency cavity ringdown diagnostic for atmospheric particulate matter,” Opt. Lett. 12, 954–956 (1998). [CrossRef]
  18. M. G. H. Boogaarts, G. Meijer, “Measurement of the beam intensity in a laser desorption jet-cooling mass spectrometer,” J. Chem. Phys. 103, 5269–5274 (1995). [CrossRef]
  19. P. Zalicki, R. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995). [CrossRef]
  20. R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ringdown spectroscopy,” Appl. Opt. 38, 3951–3960 (1999). [CrossRef]
  21. J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, R. N. Zare, “Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame,” Chem. Phys. Lett. 284, 387–395 (1998). [CrossRef]
  22. J. Martin, B. A. Paldus, P. Zalicki, E. Wahl, T. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996). [CrossRef]
  23. J. B. Paul, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy,” Anal. Chem. News Features 69A, 287–292 (1997). [CrossRef]
  24. A. McIlroy, “Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy,” Chem. Phys. Lett. 296, 151–158 (1998). [CrossRef]
  25. P. Zalicki, Y. Ma, R. Zare, E. Wahl, J. Dadamio, T. Owano, C. Kruger, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995). [CrossRef]
  26. R. Weast, Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton, Fla., 1997).
  27. A. McIlroy, Sandia National Laboratories Mail Stop 9055, Livermore, Calif. 94551-0969 (personal communication, 2001).
  28. S. Spuler, M. Linne, A. Schocker, A. Brockhinke, K. Kohse-Höinghaus, “Measurements of CH2 and HCO radicals in low-pressure flames by cavity ringdown laser absorption spectroscopy,” presented at the Spring 2000 Meeting of the Western States Section of the Combustion Institute, Colorado School of Mines, Golden, Colo., 13–14 March 2000, WSS/CI paper 00S-3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited