OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 15 — May. 20, 2002
  • pp: 2879–2887

Optimization of absorption-based optical chemical sensors that employ a single-reflection configuration

Lubos Polerecky, Conor S. Burke, and Brian D. MacCraith  »View Author Affiliations

Applied Optics, Vol. 41, Issue 15, pp. 2879-2887 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (411 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optimization strategy for a generic absorption-based optical chemical sensor that employs a single-reflection planar configuration is reported. A theoretical model describing the sensor sensitivity is presented and verified experimentally. It is shown that optimum sensitivity is not achieved with an evanescent-wave sensing technique but with a configuration in which the interrogating light propagates within the sensing layer. Moreover, an optimization strategy based on identification of an optimized reflection angle is described. This analysis provides an optimization strategy that is extendable to multimode waveguide platforms. The predictions of the model are used in the design of a prototype LED-based sensor system. The performance of this system is examined, and the results are compared with alternative absorption-based sensor configurations.

© 2002 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(160.6060) Materials : Solgel
(220.4830) Optical design and fabrication : Systems design
(310.0310) Thin films : Thin films

Original Manuscript: June 1, 2001
Revised Manuscript: October 29, 2001
Published: May 20, 2002

Lubos Polerecky, Conor S. Burke, and Brian D. MacCraith, "Optimization of absorption-based optical chemical sensors that employ a single-reflection configuration," Appl. Opt. 41, 2879-2887 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Yang, S. Scott Saavedra, “Chemical sensing using solgel-derived planar waveguides and indicator phases,” Anal. Chem. 67, 1307–1314 (1995). [CrossRef]
  2. M. D. DeGrandpre, L. W. Burgess, P. L. White, D. S. Goldman, “Thin film planar waveguide sensor for liquid phase absorbance measurements,” Anal. Chem. 62, 2012–2017 (1990). [CrossRef]
  3. S. J. Choquette, L. Locascio-Brown, R. A. Durst, “Planar waveguide immunosensor with fluorescent liposome amplification,” Anal. Chem. 64, 55–60 (1992). [CrossRef]
  4. R. Klein, E. Voges, “Integrated-optic ammonia sensor,” Sens. Actuators B 11, 221–225 (1993). [CrossRef]
  5. H. Hisamoto, K. H. Kim, Y. Manabe, K. Sasaki, H. Minamitani, K. Suzuki, “Ion-sensitive and selective active waveguide optodes,” Anal. Chim. Acta 342, 31–39 (1997). [CrossRef]
  6. K. Kim, H. Minamitani, H. Hisamoto, K. Suzuki, S. Kang, “Active optical thin-film waveguide sensor for ion sensing,” Anal. Chim. Acta 343, 199–208 (1997). [CrossRef]
  7. H. Hisamoto, K. Suzuki, “Ion-selective optides: current developments and future prospects,” Trends Anal. Chem. 18, 513–524 (1999). [CrossRef]
  8. O. Parriaux, G. J. Veldhuis, “Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors,” J. Lightwave Technol. 16, 573–582 (1998). [CrossRef]
  9. J. E. Lee, S. S. Saavedra, “Evanescent sensing in doped solgel glass films,” Anal. Chim. Acta 285 (3), 265–269 (1994). [CrossRef]
  10. L. Yang, S. S. Saavedra, N. R. Armstrong, “Solgel-based planar waveguide sensor for gaseous iodine,” Anal. Chem. 68 (11), 1834–1841 (1996). [CrossRef]
  11. K. Ohta, H. Ishida, “Matrix formalism for calculation of electric field intensity of light in stratified multilayered films,” Appl. Opt. 29, 1952–1959 (1990). [CrossRef] [PubMed]
  12. S. Ekgasit, H. Ishida, “Optical depth profiling by attenuated total reflection Fourier transform infrared spectroscopy: a new approach,” Appl. Spectrosc. 50, 1187–1195 (1996). [CrossRef]
  13. C. Malins, T. M. Butler, B. D. MacCraith, “Influence of the surface polarity of dye-doped solgel glass films on optical ammonia sensor response,” Thin Solid Films 368, 105–110 (2000). [CrossRef]
  14. T. M. Butler, B. D. MacCraith, C. M. McDonagh, “Development of an extended range fiber optic pH sensor using evanescent wave absorption of solgel entrapped pH indicators,” in Chemical, Biochemical, and Environmental Fiber Sensors VII, A. V. Scheggi, ed., Proc. SPIE2508, 168–178 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited