OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 15 — May. 20, 2002
  • pp: 2930–2934

Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core

Fritjof Helmchen, David W. Tank, and Winfried Denk  »View Author Affiliations

Applied Optics, Vol. 41, Issue 15, pp. 2930-2934 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (161 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multiphoton excitation through optical fibers is limited by pulse broadening caused by self-phase modulation. We show that for short fiber lengths (approximately 2 m) two-photon excitation efficiency at the fiber output can be substantially improved by single-mode propagation in a large-area multimode fiber (10-µm core diameter) instead of a standard 5.5-µm core fiber. Measurements and numerical simulations of postfiber spectra and pulse widths demonstrate that the increase in efficiency is due to a reduction of nonlinear pulse broadening. Single-mode propagation in a large-core fiber is thus suitable for multiphoton applications for which pulse recompression is not possible at the fiber end.

© 2002 Optical Society of America

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4180) Nonlinear optics : Multiphoton processes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.5520) Ultrafast optics : Pulse compression

Original Manuscript: July 10, 2001
Revised Manuscript: November 13, 2001
Published: May 20, 2002

Fritjof Helmchen, David W. Tank, and Winfried Denk, "Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core," Appl. Opt. 41, 2930-2934 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  2. W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt. 1, 296–304 (1996). [CrossRef] [PubMed]
  3. R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon, “Characterization and optimization of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998). [CrossRef]
  4. A. Lago, A. T. Obeidat, A. E. Kaplan, J. B. Khurgin, P. L. Shkolnikov, M. D. Stern, “Two-photon-induced fluorescence of biological markers based on optical fibers,” Opt. Lett. 20, 2054–2056 (1995). [CrossRef] [PubMed]
  5. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  6. P. M. Delaney, M. R. Harris, “Fiberoptics in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), pp. 515–523. [CrossRef]
  7. F. Helmchen, M. S. Fee, D. W. Tank, W. Denk, “A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals,” Neuron 31, 903–912 (2001). [CrossRef] [PubMed]
  8. M. Oberthaler, R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 68, 1017–1019 (1993). [CrossRef]
  9. B. R. Washburn, J. A. Buck, S. E. Ralph, “Transform-limited spectral compression due to self-phase modulation in fibers,” Opt. Lett. 25, 445–447 (2000). [CrossRef]
  10. S. Maiti, J. K. Ranka, A. L. Gaeta, W. W. Webb, “Multiphoton fluorescence spectroscopy through optical fibers,” Biophys. J. 72, A217 (1997).
  11. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52–54 (1998). [CrossRef]
  12. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969). [CrossRef]
  13. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997). [CrossRef]
  14. M. Kihara, M. Matsumoto, T. Haibara, S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14, 2209–2214 (1996). [CrossRef]
  15. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998). [CrossRef]
  16. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999). [CrossRef] [PubMed]
  17. M. T. Myaing, J. Urayama, A. Braun, T. B. Norris, “Nonlinear propagation of negatively chirped pulses: maximizing the peak intensity at the output of a fiber probe,” Opt. Express 7, 210–214 (2000), http://www.opticsexpress.org . [CrossRef] [PubMed]
  18. C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited