OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 15 — May. 20, 2002
  • pp: 2947–2954

Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power

Efim Khazanov, Alexey Anastasiyev, Nikolay Andreev, Alexander Voytovich, and Oleg Palashov  »View Author Affiliations


Applied Optics, Vol. 41, Issue 15, pp. 2947-2954 (2002)
http://dx.doi.org/10.1364/AO.41.002947


View Full Text Article

Enhanced HTML    Acrobat PDF (484 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A decrease in the depolarization ratio by more than one order of magnitude by use of a recently proposed Faraday mirror (FM) in comparison with the traditional FM has been demonstrated experimentally. At a high average laser power, the possibility of an increase in the accuracy of compensation of depolarization in the active element by means of a λ/4 plate with both the traditional and the novel FM is shown.

© 2002 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(230.3810) Optical devices : Magneto-optic systems
(260.1440) Physical optics : Birefringence

History
Original Manuscript: August 6, 2001
Revised Manuscript: January 2, 2002
Published: May 20, 2002

Citation
Efim Khazanov, Alexey Anastasiyev, Nikolay Andreev, Alexander Voytovich, and Oleg Palashov, "Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power," Appl. Opt. 41, 2947-2954 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-15-2947


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999). [CrossRef]
  2. Y. Liao, R. J. D. Miller, M. R. Armstrong, “Pressure tuning of thermal lensing for high-power scaling,” Opt. Lett. 24, 1343–1345 (1999). [CrossRef]
  3. E. Khazanov, N. Andreev, O. Palashov, D. Reitze, “Use of mechanical stress in design of a Faraday isolator for high power radiation,” in Conference on Lasers and Electro-Optics (CLEO), Postdeadline papers, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 321–322.
  4. E. Khazanov, A. Poteomkin, E. Katin, “Novel method for compensating birefringence in active elements of solid-state lasers,” J. Opt. Soc. Am. B 41, 667–671 (2002). [CrossRef]
  5. W. C. Scott, M. de Wit, “Birefringence compensation and Tem00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971). [CrossRef]
  6. N. Kugler, S. Dong, Q. Lu, H. Weber, “Investigation of the misalignment sensitivity of a birefringence-competed two-rod Nd:YAG laser system,” Appl. Opt. 36, 9359–9366 (1997). [CrossRef]
  7. N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Electron. 18, 1154–1160 (1991)]. [CrossRef]
  8. N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS-cells,” Laser Phys. 2, 1–19 (1992).
  9. D. A. Rockwell, “A review of phase-conjugate solid-state laser,” IEEE J. Quantum Electron. 24, 1124–1140 (1988). [CrossRef]
  10. W. A. Clarkson, N. S. Felgate, D. C. Hanna, “Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24, 820–822 (1999). [CrossRef]
  11. R. Hua, S. Wada, H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolarization loss from thermally induced birefringence in Nd:YAG Lasers,” Opt. Commun. 175, 189–200 (2000). [CrossRef]
  12. R. Kandasamy, M. Yamanaka, Y. Izawa, S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000). [CrossRef]
  13. E. A. Khazanov, “New Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001). [Kvant. Electron. 31, 351–356 (2001)] [CrossRef]
  14. E. A. Lundstrom, “Waveplate for correcting thermally induced stress birefringence in solid state lasers,” U.S. patent4,408,334 (4Oct.1983).
  15. E. A. Khazanov, “A novel technique for compensation of birefringence in active elements of solid-state lasers,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 528–529.
  16. G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980). [CrossRef]
  17. M. Martinelly, “A universal compensator for polarization changes induced birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989). [CrossRef]
  18. N. Andreev, S. V. Kuznetsov, O. Palashov, G. Pasmanik, E. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wave front,” Sov. J. Quantum Electron. 22, 800–802 (1992) [Kvant. Electron. 19, 862–802 (1992)]. [CrossRef]
  19. N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999). [CrossRef]
  20. K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped within randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices and Applications, J. W. Pierce, eds., Proc. SPIE3928, 43–51 (2000). [CrossRef]
  21. C. A. Denman, S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” in Advanced Solid-State Lasers, Vol. 26 of the OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 608–612.
  22. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999). [CrossRef]
  23. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999) [Kvant. Electron. 26, 59–64 (1999)]. [CrossRef]
  24. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000). [CrossRef]
  25. N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45dB Faraday isolator for 100W average radiation power,” Quantum Electron. 30, 1107–1108 (2000) [Kvant. Electron. 30, 1107–1108 (2000)]. [CrossRef]
  26. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of TGG crystal orientation on the isolation ratio of the Faraday isolator at a high average power,” Appl. Opt. 41, 483–492 (2002). [CrossRef] [PubMed]
  27. G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970). [CrossRef]
  28. J. F. Nye, Physical Properties of Crystals, (Oxford U. Press, London, 1964).
  29. E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for high average laser-radiation power,” Quantum Electron. 30, 147–151 (2000) [Kvant. Electron. 30, 147–151 (2000)]. [CrossRef]
  30. N. Andreev, A. Babin, A. Kiselev, O. Palashov, E. Khazanov, O. Shaveleov, T. Zarubina, “Thermooptical constant of magneto-active glasses,” J. Opt. Technol. 67, 556–558 (2000). [CrossRef]
  31. T. V. Zarubina, G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992) (in Russian).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited