OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 15 — May. 20, 2002
  • pp: 2973–2977

Lithium isotope separation with tunable diode lasers

Ignacio E. Olivares, Andrés E. Duarte, Eduardo A. Saravia, and Francisco J. Duarte  »View Author Affiliations

Applied Optics, Vol. 41, Issue 15, pp. 2973-2977 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (93 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A laser-isotope-separation study of lithium has been performed with two-step excitation involving UV laser radiation and a visible tunable-diode laser. The method yields a high degree of selectivity by tuning the narrow-linewidth diode laser to the D 1 or D 2 levels of the lithium atom. Selective laser excitation is simplified by the use of the tunable diode laser and the overall approach benefits from the application of a compact mass selector that includes a precision magnetic sector and an ion beam that is designed specifically for light atoms such as lithium.

© 2002 Optical Society of America

OCIS Codes
(300.6170) Spectroscopy : Spectra
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6410) Spectroscopy : Spectroscopy, multiphoton
(300.6540) Spectroscopy : Spectroscopy, ultraviolet
(300.6550) Spectroscopy : Spectroscopy, visible

Original Manuscript: June 18, 2001
Revised Manuscript: November 20, 2001
Published: May 20, 2002

Ignacio E. Olivares, Andrés E. Duarte, Eduardo A. Saravia, and Francisco J. Duarte, "Lithium isotope separation with tunable diode lasers," Appl. Opt. 41, 2973-2977 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Arisawa, Y. Maruyama, Y. Suzuki, K. Shiba, “Lithium isotope separation by laser,” Appl. Phys. B 28, 73–76 (1982). [CrossRef]
  2. N. V. Karlov, B. B. Krynetskii, O. M. Stel’makh, “Measurement of the photoionization cross section of the Li atom at the 2P level,” Sov. J. Quantum Electron. 7, 1305–1306 (1977). [CrossRef]
  3. M. Yamashita, H. Kashiwagi, “Method for separation and enrichment of lithium isotopes by laser,” U.S. Patent4,149,077 (10April1979).
  4. M. G. Payne, L. Deng, N. Thonnard, “Applications of resonance ionization mass spectroscopy,” Rev. Sci. Instrum. 65, 2433–2459 (1994). [CrossRef]
  5. R. W. Shaw, J. P. Young, D. H. Shmith, A. S. Bonnanno, J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990). [CrossRef] [PubMed]
  6. R. W. Shaw, J. P. Young, D. H. Smith, “Diode laser initiated resonance ionization mass spectrometry of lanthanum,” Anal. Chem. 61, 695–697 (1989). [CrossRef]
  7. G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979). [CrossRef]
  8. G. I. Bekov, V. S. Letokhov, V. N. Radaev, “Laser photoionization spectroscopy for ultrasensitive trace element analysis,” Fresenius Z. Anal. Chem. 335, 19–24 (1989). [CrossRef]
  9. L. Hollberg, “CW dye lasers,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 185–238. [CrossRef]
  10. F. J. Duarte, J. A. Piper, “Narrow linewidth high prf copper laser-pumped dye-laser oscillators,” Appl. Opt. 23, 1391–1394 (1984). [CrossRef]
  11. I. L. Bass, R. E. Bonanno, R. P. Hackel, P. R. Hammond, “High-average-power dye laser at Lawrence Livermore National Laboratory,” Appl. Opt. 31, 6993–7006 (1992). [CrossRef] [PubMed]
  12. S. Singh, K. Dasgupta, S. Kumar, K. G. Manohar, L. G. Nair, U. K. Chatterjee, “High-power high-repetition-rate copper-vapor-pumped dye laser,” Opt. Eng. 33, 1894–1904 (1994). [CrossRef]
  13. Y. Maruyama, M. Kato, T. Arizawa, “Effects of excited-state absorption and amplified spontaneous emission in a high-average-power dye laser amplifier pumped by copper vapor lasers,” Opt. Eng. 35, 1084–1087 (1996). [CrossRef]
  14. A. Sugiyama, T. Nakayama, M. Kato, Y. Maruyama, T. Arisawa, “Characteristics of a pressure-tuned single-mode dye laser pumped by a copper vapor laser,” Opt. Eng. 35, 1093–1097 (1996). [CrossRef]
  15. P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, New York, 1995), pp. 349–442. [CrossRef]
  16. F. J. Duarte, “Dispersive external-cavity semiconductor lasers,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel-Dekker, New York, 1995), pp. 83–112.
  17. I. E. Olivares, A. E. Duarte, “Resonance ionization spectroscopy in a thermal lithium beam by means of diode lasers,” Appl. Opt. 38, 7481–7485 (1999). [CrossRef]
  18. I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998). [CrossRef]
  19. C. R. Vidal, “Spectroscopic observations of subsonic and sonic vapor inside an open-ended heat pipe,” J. Appl. Phys. 44, 2225–2232 (1973). [CrossRef]
  20. C. R. Vidal, J. Cooper, “Heat-pipe oven: a new, well defined metal vapor device for spectroscopic measurements,” J. Appl. Phys. 40, 3370–3374 (1969). [CrossRef]
  21. J. R. Pierce, “Rectilinear electron flows in beams,” J. Appl. Phys. II, 548–554 (1940). [CrossRef]
  22. O. Heinz, R. T. Reaves, “Lithium ion emitter for low energy beam experiments,” Rev. Sci. Instrum. 38, 1129–1130 (1968).
  23. A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998). [CrossRef]
  24. W. Demtröder, “Laser spectroscopy in molecular beams” in Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, New York, 1996), pp. 516–550.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited