OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 15 — May. 20, 2002
  • pp: 2994–2999

Backward-Enhanced Fluorescence from Clusters of Microspheres and Particles of Tryptophan

Yong-Le Pan, Steven C. Hill, Jean-Pierre Wolf, Stephen Holler, Richard K. Chang, and Jerold R. Bottiger  »View Author Affiliations


Applied Optics, Vol. 41, Issue 15, pp. 2994-2999 (2002)
http://dx.doi.org/10.1364/AO.41.002994


View Full Text Article

Acrobat PDF (586 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Measured fluorescence from single-particle clusters of dye-doped polystyrene microspheres, dried nonspherical particles of tryptophan, and single polystyrene microspheres is enhanced in the backward direction (180° from the incident laser). This enhancement (a factor of 2–3 compared to 90°), which can be interpreted as a consequence of the reciprocity principle, increases with the particle refractive index.

© 2002 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(300.2530) Spectroscopy : Fluorescence, laser-induced
(350.4800) Other areas of optics : Optical standards and testing

Citation
Yong-Le Pan, Steven C. Hill, Jean-Pierre Wolf, Stephen Holler, Richard K. Chang, and Jerold R. Bottiger, "Backward-Enhanced Fluorescence from Clusters of Microspheres and Particles of Tryptophan," Appl. Opt. 41, 2994-2999 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-15-2994


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. P. Kratohvil, M.-P. Lee, and M. Kerker, “Angular distribution of fluorescence from small particles,” Appl. Opt. 17, 1978–1980 (1978).
  2. E.-H. Lee, R. E. Benner, J. B. Fenn, and R. K. Chang, “Angular distribution of fluorescence from monodispersed particles,” Appl. Opt. 17, 1980–1982 (1978).
  3. M. Kerker, P. J. McNulty, M. Sculley, H. Chew, and D. D. Cooke, “Raman and fluorescent scattering by molecules embedded in small particles: numerical results for incoherent optical processes,” J. Opt. Soc. Am. 68, 1676–1685 (1978).
  4. M. Kerker, M. A. Van Dilla, A. Brunsting, J. P. Kratohvil, P. Hsu, D. S. Wang, J. W. Gray, and R. G. Langlois, “Is the central dogma of flow cytometry true: that fluorescence intensity is proportional to cellular dye content?” Cytometry 3, 71–78 (1982).
  5. S. Druger and P. J. McNulty, “Radiation patterns of fluorescence from molecules embedded in small particles: general case,” Appl. Opt. 22, 75–82 (1983).
  6. N. Velesco and G. Schweiger, “Geometrical optics calculation of inelastic scattering on large particles,” Appl. Opt. 38, 1046–1052 (1999).
  7. S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
  8. R. F. Harrington, Time Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961), p. 118.
  9. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, New York, 1999), p. 381.
  10. S. C. Hill, G. Videen, and J. D. Pendleton, “Reciprocity method for obtaining the far fields generated by a source inside or near a microparticle,” J. Opt. Soc. Am. B 14, 2522–2529 (1997).
  11. J. A. Lock, “Semiclassical scattering of an electric dipole source inside a spherical particle,” J. Opt. Soc. Am. A 18, 3085–3097 (2001).
  12. K. L. Schroder, P. J. Hargis, Jr., R. L. Schmitt, D. J. Rader, and I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli and M. L. Althouse, eds., Proc. SPIE 3855, 82–91 (1999).
  13. R. N. Berglund and B. Y. H. Liu, “Generation of monodispersed aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
  14. J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenaen, “An ink jet aerosol generator,” J. Aerosol Sci. Suppl. 1 29, S965 (1998).
  15. S. Holler, J. C. Auger, B. Stout, Y. L. Pan, J. R. Bottiger, R. K. Chang, and G. Videen, “Observations and calculations of light scattering from clusters of spheres,” Appl. Opt. 39, 6873–6887 (2000).
  16. H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A. 13, 396–404 (1976).
  17. S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, and J. M. Ramsey, “Modeling fluorescence collection from single molecules in microspheres: effects of position, orientation, and frequency,” Appl. Opt. 35, 6278–6288 (1996).
  18. G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt. 36, 958–967 (1997).
  19. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
  20. Y.-L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24, 116–118 (1999).
  21. P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
  22. S. C. Hill, M. D. Barnes, W. B. Whitten, and J. M. Ramsey, “Collection of fluorescence from single molecules in microspheres: effects of illumination geometry,” Appl. Opt. 36, 4425–4437 (1997).
  23. S. C. Hill, M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, “Simulation of single-molecule photocount statistics in microdroplets,” Anal. Chem. 70, 2964–2971 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited