OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 16 — Jun. 1, 2002
  • pp: 3053–3060

Review of the Fundamentals of Thin-Film Growth

Norbert Kaiser  »View Author Affiliations

Applied Optics, Vol. 41, Issue 16, pp. 3053-3060 (2002)

View Full Text Article

Acrobat PDF (912 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The properties of a thin film of a given material depend on the film’s real structure. The real structure is defined as the link between a thin film’s deposition parameters and its properties. To facilitate engineering the properties of a thin film by manipulating its real structure, thin-film formation is reviewed as a process starting with nucleation followed by coalescence and subsequent thickness growth, all stages of which can be influenced by deposition parameters. The focus in this review is on dielectric and metallic films and their optical properties. In contrast to optoelectronics all these film growth possibilities for the engineering of novel optical films with extraordinary properties are just beginning to be used.

© 2002 Optical Society of America

OCIS Codes
(310.0310) Thin films : Thin films
(310.1620) Thin films : Interference coatings
(310.1860) Thin films : Deposition and fabrication
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties
(310.6870) Thin films : Thin films, other properties

Norbert Kaiser, "Review of the Fundamentals of Thin-Film Growth," Appl. Opt. 41, 3053-3060 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. Hass, “Struktur und Optik aufgedampfter Metallschichten,” (“Structure and Optics of evaporated metal films”), Ann. Phys. (Leipzig) 31, 245–260 (1938)).
  2. D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
  3. K. H. Guenther, D. J. Smith, and L. Bangjun, “Structure and related properties of thin film optical coatings,” in Optical Thin Films II: New Developments, R. I. Seddon, ed., Proc. SPIE 678, 2–11 (1986).
  4. H. A. Macleod, Performance-limiting factors in optical coatings, in Los Angeles Conference on Optics ’81, D. H. Liebenberg, ed., Proc. SPIE 288, 580–586 (1981).
  5. H. A. Macleod, “Microstructure of optical thin films,” in Optical Thin Films, R. I. Seddon, ed., Proc. SPIE 325, 21–29 (1982).
  6. M. Ohring, The Material Science of Thin Films (Academic, San Diego, Calif., 1992).
  7. H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1999).
  8. J. Venables, Introduction to Surfaces and Thin Film Processes (Cambridge U. Press, Cambridge, UK, 2000).
  9. E. Bauer, “Wachstum dünner Schicten,” Z. Kristallogr. 110, 372–394 (1958).
  10. I. Markov and R. Kaischew, “Einfluss von Substratinhomogenitäten auf die Kinetik der heterogenen Keimbildung,” Krist. Tech. 11, 685–692 (1976).
  11. B. A. Movchan and A. V. Demchishin, “Rost i struktura tonkich tverdotelnych plenok,” Phys. Met. Metallogr. 28, 83–91 (1969).
  12. J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol. 11, 666–672 (1974).
  13. J. A. Thornton, “Structure and topography of sputtered coatings,” Annu. Rev. Mater. Sci. 7, 239–260 (1977).
  14. J. A. Thornton, “Study of the microstructure of thick sputtered coatings,” Thin Solid Films 40, 335–342 (1977).
  15. J. A. Thornton, “The microstructure of sputter-deposited coatings,” J. Vac. Sci. Technol. A 4, 3059–3065 (1986).
  16. R. Messier, A. P. Giri, and R. A. Roy, “Revised structure zone model for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984).
  17. R. Messier, “Toward quantification of thin film morphology,” J. Vac. Sci. Technol. A 4/3, 490–495 (1986).
  18. C. R. M. Grovenor, H. T. G. Hentzell, and D. A. Smith, “The development of grain structure during growth of metallic films,” Acta Metall. 32, 773–781 (1984).
  19. P. B. Barna and M. Adamik, “Growth mechanisms of polycrystalline thin films,” in Science and Technology of Thin Films, in F. C. Matacotta and G. Ottaviani, eds. (World Scientific, Singapore, 1995), pp. 1–28.
  20. D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, and B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
  21. I. Hodgkinson and Q. Wu, Birefringent Thin Film Polarizing Elements (World Scientific, Singapore, 1999).
  22. I. Hodgkinson, A. Lakhtakia, and Q. Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39, 2831–2834 (2000).
  23. P. S. Kirejew, Physik der Halbleiter (Akademie-Verlag, Berlin, 1974), Chap. 2, p. 470.
  24. A. Duparré, “Light scattering of thin dielectric films,” in Thin Films for Optical Coatings, R. E. Hummel and K. H. Guenther, eds., Vol. 1 of Handbook of Optical Properties(CRC Press, Boca Raton, Fla., 1995), pp. 273–304.
  25. C. von Fragstein and H. Römer, “Über die Anomalie der optischen Konstanten,” Z. Phys. 151, 54–71 (1958).
  26. U. Kreibig and M. Vollmer, eds., Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
  27. H. Monard, “Optical properties of silver, gold and aluminium ultra thin granular films evaporated on oxidized aluminium,” Thin Solid Films 310, 265–273 (1997).
  28. O. Stenzel, A. N. Lebedev, M. Schreiber, and D. R. T. Zahn, “Simulation of linear optical losses of absorbing heterogeneous thin solid films,” Thin Solid Films 372, 200–208 (2000).
  29. L. T. Vinh, V. Yam, Y. Zeng, and D. Bouchier, “Nucleation and growth of self-assembled Ge/Si (001) quantum dots in single and stacked layers,” Thin Solid Films 380, 2–9 (2000).
  30. R. J. Hill and S. J. Nadel, Coated Glass Applications and Markets (BOC Coating Technology, Fairfield, Calif., 1999).
  31. H. J. Gläser, Dünnfilmtechnologie auf Flachglas (Verlag Karl Hofmann, Schorndorf, Germany, 1999).
  32. W. Ensinger, “Low energy ion assist during deposition—an effective tool for controlling thin film microstructure,” Nucl. Instrum. Methods Phys. Res. B 127/128, 796–808 (1997).
  33. R. Dannenberg, E. A. Stach, J. R. Groza, and B. J. Dresser, “In-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films,” Thin Solid Films 370, 54–62 (2000).
  34. S. Yulin, T. Feigl, T. Kuhlmann, and N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” in Emerging Lithographic Technologies, E. A. Dabisz, ed., Proc. SPIE 4343, 607–614 (2001).
  35. T. Kuhlmann, S. Yulin, T. Feigl, N. Kaiser, T. Gorelik, U. Kaiser, and W. Richter, “Chromium-scandium mirrors for the nitrogen Kα-line in the water window,” Appl. Opt. 41, 2048–2052 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited