OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 16 — Jun. 1, 2002
  • pp: 3137–3141

Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials

Bernhard von Blanckenhagen, Diana Tonova, and Jens Ullmann  »View Author Affiliations

Applied Optics, Vol. 41, Issue 16, pp. 3137-3141 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (102 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent progress in ellipsometry instrumentation permits precise measurement and characterization of optical coating materials in the deep-UV wavelength range. Dielectric coating materials exhibit their first electronic interband transition in this spectral range. The Tauc-Lorentz model is a powerful tool with which to parameterize interband absorption above the band edge. The application of this model for the parameterization of the optical absorption of TiO2, Ta2O5, HfO2, Al2O3, and LaF3 thin-film materials is described.

© 2002 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(310.6860) Thin films : Thin films, optical properties

Original Manuscript: September 21, 2001
Revised Manuscript: January 1, 2002
Published: June 1, 2002

Bernhard von Blanckenhagen, Diana Tonova, and Jens Ullmann, "Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials," Appl. Opt. 41, 3137-3141 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Dobrowolski, F. C. Ho, A. Waldorf, “Determination of optical constants of thin film coating materials based on inverse syntesis,” Appl. Opt. 22, 3191–3200 (1983). [CrossRef]
  2. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953). [CrossRef]
  3. T. Koslowski, “The electronic structure of molten salts: a numerical approach,” Ber. Bunsenges. Phys. Chem. 100, 95–100 (1996). [CrossRef]
  4. See, e.g., N. F. Mott, E. A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon, Oxford, 1979).
  5. J. Tauc, R. Grigorovici, A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solid 15, 627–637 (1966). [CrossRef]
  6. A. R. Forouhi, I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986). [CrossRef]
  7. G. E. Jellison, F. A. Modine, “Parametrization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996). [CrossRef]
  8. G. E. Jellison, V. I. Merculov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000). [CrossRef]
  9. G. E. Jellison, F. A. Modine, P. Doshi, A. Rohatgi, “Spectroscopic ellipsometry characterization of thin-film silicon nitride,” Thin Solid Films 313–314, 193–197 (1998). [CrossRef]
  10. J. Leng, J. Opsal, H. Chu, M. Senko, D. E. Aspnes, “Analytic representation of dielectric functions of materials for device and structural modeling,” Thin Solid Films 313–314, 132–136 (1998). [CrossRef]
  11. K. Postava, M. Aoyama, T. Yamaguchi, H. Oda, “Spectroellipsometric characterisation of materials for multilayer coatings,” Appl. Surface Sci. 175–176, 276–280 (2001). [CrossRef]
  12. S. Lee, J. Hong, “Comparison of various parameterization models for optical functions of amorphous materials: application for sputtered titanium dioxide thin films,” Jpn. J. Appl. Phys. 39, 241–244 (2000). [CrossRef]
  13. N. V. Nguyen, C. A. Richter, Y. J. Cho, G. B. Alers, L. A. Stirling, “Effect of high-temperature annealing on dielectric function of Ta2O5 films observed by spectroscopic ellipsometry,” Appl. Phys. Lett. 77, 3012–3014 (2000). [CrossRef]
  14. Sopra S. A., Bois Colombes, France.
  15. J. A. Woollam, Inc., Lincoln, Nebraska.
  16. A. Bendavid, P. J. Martin, A. Jamting, H. Takikawa, “Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition,” Thin Solid Films 355–356, 6–11 (1999). [CrossRef]
  17. H. Takikawa, T. Matsui, T. Sakakibara, A. Bendavid, P. J. Martin, “Properties of titanium oxide film prepared by reactive cathodic vacuum arc deposition,” Thin Solid Films 348, 145–151 (1999). [CrossRef]
  18. S. Y. Kim, “Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin films by optical methods,” Appl. Opt. 35, 6703–6707 (1996). [CrossRef] [PubMed]
  19. D. Bhattacharyya, N. K. Sahoo, S. Thakur, N. C. Das, “Spectroscopic ellipsometry of TiO2 layers prepared by ion-assisted electron-beam evaporation,” Thin Solid Films 360, 96–102 (2000). [CrossRef]
  20. D. Mardare, P. Hones, “Optical dispersion analysis of TiO2 thin films based on variable-angle spectroscopic ellipsometry measurements,” Mater. Sci. Eng. B 68, 42–47 (1999). [CrossRef]
  21. I. Porqueras, J. Marti, E. Bertran, “Optical and electrical characterisation of Ta2O5 thin films for ionic conduction applications,” Thin Solid Films 449–452, 42–47 (1999).
  22. F. E. Ghodsi, F. Z. Tepehan, G. G. Tepehan, “Optical properties of Ta2O5 thin films deposited using the spin coating process,” Thin Solid Films 295, 11–15 (1997). [CrossRef]
  23. J.-Y. Zhang, I. W. Boyd, “Ultrathin high-quality tantalum pentoxide films grown by photoinduced chemical vapor deposition,” Appl. Phys. Lett. 77, 3574–3576 (2000). [CrossRef]
  24. T. Nishide, S. Honda, M. Matsuura, M. Ide, “Surface, structural and optical properties of sol-gel derived HfO2 films,” Thin Solid Films 371, 61–65 (2000). [CrossRef]
  25. R. W. Collins, K. Vedam, “Ellipsometers,” in Encyclopedia of Applied Physics (VCH Publishers, Deerfield, Fla., 1993), Vol. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited