OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 16 — Jun. 1, 2002
  • pp: 3142–3149

Pit formation observed in a multilayer dielectric coating as a result of simulated space environmental exposure

Peter D. Fuqua, Nathan Presser, James D. Barrie, Michael J. Meshishnek, and Dianne J. Coleman  »View Author Affiliations


Applied Optics, Vol. 41, Issue 16, pp. 3142-3149 (2002)
http://dx.doi.org/10.1364/AO.41.003142


View Full Text Article

Enhanced HTML    Acrobat PDF (2396 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Certain spaceborne telescope designs require that dielectric-coated lenses be exposed to the energetic electrons and protons associated with the space environment. Test coupons that were exposed to a simulated space environment showed extensive pitting as a result of dielectric breakdown. A typical pit was 50–100 µm at the surface and extended to the substrate material, in which a 10-µm-diameter melt region was found. Pitting was not observed on similar samples that had also been overcoated with a transparent conductive thin film. Measurement of the bidirectional reflectance distribution transfer function showed that pitting caused a fivefold to tenfold increase in the scattering of visible light.

© 2002 Optical Society of America

OCIS Codes
(310.6870) Thin films : Thin films, other properties
(350.6090) Other areas of optics : Space optics

History
Original Manuscript: September 26, 2001
Revised Manuscript: January 2, 2002
Published: June 1, 2002

Citation
Peter D. Fuqua, Nathan Presser, James D. Barrie, Michael J. Meshishnek, and Dianne J. Coleman, "Pit formation observed in a multilayer dielectric coating as a result of simulated space environmental exposure," Appl. Opt. 41, 3142-3149 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-16-3142


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. L. Vampola, A. Korth, “Electron drift echos in the inner magnetosphere,” Geophys. Res. Lett. 19, 625–628 (1992). [CrossRef]
  2. J. A. Van Allen, G. H. Ludwig, E. C. Ray, C. E. McIlwain, “Observation of high intensity radiation by satellites 1958 alpha and gamma,” Jet Propul. 28, 588–592 (1958). [CrossRef]
  3. J. A. Van Allen, L. A. Frank, “Radiation around the Earth to a radial distance of 107, 400 km,” Nature (London) 183, 430–434 (1959). [CrossRef]
  4. W. K. Stuckey, M. J. Meshishnek, “Solar ultraviolet and space radiation effects on inflatable materials,” in Gossamer Spacecraft: Membrane/Inflatable Structures Technology for Space Applications, C. H. Jenkins, ed., Vol. 191 of AIAA Progress Astronautics Aeronautics Series (AIAA, Reston, Va., 2001), pp. 303–320.
  5. J. I. Vette, “The AE-8 trapped electron model environment,” National Space Science Data Center Report, NSSDC/WDC-A-RS-91-24, NASA-TM-107820 (NASA Goddard Space Flight Center, Greenbelt, Md., 1991).
  6. C. K. Purvis, H. B. Garrett, A. C. Whittlesey, N. J. Stevens, “Design guidelines for assessing and controlling spacecraft charging effects,” NASA Tech. Paper 2361 (NASA, Goddard Space Flight Center, Greenbelt, Md., 1984).
  7. S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multiplayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 137–142 (1998).
  8. M. Poulingue, J. Dijon, P. Garrec, P. Lyan, “1.06-µm laser irradiation on high-reflection coatings inside a scanning electron microscope,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 188–195 (1998).
  9. M. Poulingue, J. Dijon, M. Ignat, H. Leplan, “New approach for the critical size of the nodular defects: the mechanical connection,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 370–380 (1998).
  10. J. Dijon, M. Poulingue, J. Hue, “Thermomechanical model of mirror laser damage at 1.06 µm: I. Nodule ejection,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 387–397 (1998).
  11. J. Dijon, G. Ravel, B. André, “Thermomechanical model of mirror laser damage at 1.06 µm: II. Flat bottom pits formation,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 398–407 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited