OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 16 — Jun. 1, 2002
  • pp: 3156–3166

Laser-induced damage of materials in bulk, thin-film, and liquid forms

Jean-Yves Natoli, Laurent Gallais, Hassan Akhouayri, and Claude Amra  »View Author Affiliations


Applied Optics, Vol. 41, Issue 16, pp. 3156-3166 (2002)
http://dx.doi.org/10.1364/AO.41.003156


View Full Text Article

Enhanced HTML    Acrobat PDF (2028 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Accurate threshold curves of laser-induced damage (7-ns single shot at 1.064 µm) are measured in bulk and at the surfaces of optical components such as substrates, thin films, multilayers, and liquids. The shapes and the slopes of the curves are related to the spot size and to the densities of the nanodefects that are responsible for damage. First, these densities are reported for bulk substrates. In surfaces and films the recorded extrinsic and intrinsic threshold curves permit the discrimination of the effects of microdefects and nanodefects. In all cases the density of nanocenters is extracted by means of a phenomenological approach. Then we test liquids and mixtures of liquids with controlled defect densities. The results emphasize the agreement between measurement and prediction and demonstrate the validity of the presence of different kinds of nanocenter as the precursors of laser damage.

© 2002 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(240.0310) Optics at surfaces : Thin films
(310.3840) Thin films : Materials and process characterization
(320.4240) Ultrafast optics : Nanosecond phenomena

History
Original Manuscript: October 1, 2001
Revised Manuscript: February 4, 2002
Published: June 1, 2002

Citation
Jean-Yves Natoli, Laurent Gallais, Hassan Akhouayri, and Claude Amra, "Laser-induced damage of materials in bulk, thin-film, and liquid forms," Appl. Opt. 41, 3156-3166 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-16-3156


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Dijon, T. Poiroux, C. Desrumaux, “Nano absorbing centers: a key point in laser damage of thin films,” in Laser-Induced Damage in Optical Materials: 1996, H. Bennett, A. Guenther, M. Kozlowski, B. Newman, M. Soileau, eds., Proc. SPIE2966, 315–325 (1997).
  2. S. Papernov, A. Schmid, J. Anzelotti, D. Smith, Z. Chrzan, “AFM-mapped, nanoscale, absorber-driven laser damage in UV high reflector multilayer,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, A. Guenther, M. Kozlowski, B. Newnam, M. Soileau, eds., Proc. SPIE2714, 384–394 (1996).
  3. S. Papernov, A. Schmid, R. Krishnan, L. Tsybeskov, “Using colloidal gold nanoparticles for studies of laser interaction with defects in thin films,” in Laser-Induced Damage in Optical Materials: 2000, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, M. Soileau, eds., Proc. SPIE4347, 146–154 (2001).
  4. J. Y. Natoli, L. Gallais, H. Akhouayri, C. Amra, “Quantitative study of laser damage threshold curves in silica and calibrated liquids: comparison with theoretical prediction,” in Laser-Induced Damage in Optical Materials: 2000, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, M. Soileau, eds., Proc. SPIE4347, 295–305 (2001).
  5. S. R. Foltyn, “Spot size effects in laser damage testing,” in Damage in Laser Materials, Natl. Bur. Stand. (U.S.) Spec. Publ.669, 368–379 (1983).
  6. J. O. Porteus, S. C. Seitel, “Absolute onset of optical surface damage using distributed defect ensembles,” Appl. Opt. 23, 3796–3805 (1984). [CrossRef] [PubMed]
  7. R. M. O’Connell, “Onset threshold analysis of defect-driven surface and bulk laser damage,” Appl. Opt. 31, 4143–4153 (1992). [CrossRef] [PubMed]
  8. R. Picard, D. Milam, R. Bradbury, “Statistical analysis of defect-caused damage in thin films,” Appl. Opt. 16, 1563–1571 (1977). [CrossRef] [PubMed]
  9. M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Génin, S. Schwartz, L. M. Sheehan, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” in Laser-Induced Damage in Optical Materials: 1998, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, M. Soileau, eds., Proc. SPIE3578, 226–234 (1999).
  10. J. Hue, J. Dijon, P. Garrec, G. Ravel, L. Poupinet, P. Lyan, “Beam characterization: application to the laser damage threshold,” in Laser-Induced Damage in Optical Materials: 1998, H. G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, M. Soileau, eds., SPIE3578, 633–644 (1999).
  11. J. Hue, P. Garrec, J. Dijon, P. Lyan, “R-on-1 automatic mapping: a new a tool for laser damage,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, A. Guenther, M. Kozlowski, B. Newnam, M. Soileau, eds., Proc. SPIE2714, 90–101 (1996).
  12. A. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Engl. B 49, 175–190 (1997). [CrossRef]
  13. H. Bercegol, “What is laser conditioning? A review focused on dielectric multilayers,” in Laser-Induced Damage in Optical Materials: 1998, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, M. Soileau, eds., Proc. SPIE3578, 421–426 (1999).
  14. E. Eva, K. Mann, N. Kaiser, B. Anton, R. Henking, D. Ristau, P. Weissbrodt, D. Mademann, L. Raupach, E. Hacker, “Laser conditionning of LaF3 MgF2 dielectric coatings at 248 nm,” Appl. Opt. 35, 5613–5619 (1999). [CrossRef]
  15. J. Swain, S. Stokowski, D. Milam, F. Rainer, “Improving the bulk laser damage resistance of potassium dihydrogen phosphate by pulsed laser irradiation,” Appl. Phys. Lett. 40, 350–352 (1982). [CrossRef]
  16. M. E. Frink, J. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, E. A. Toppo, “Temporary laser damage threshold enhancement by laser conditioning of antireflection-coated glass,” Appl. Phys. Lett. 51, 415–417 (1987). [CrossRef]
  17. J. O. Porteus, C. J. Spiker, J. B. Franck, “Correlation between He–Ne scatter an pulsed laser damage at coating defect, Appl. Opt. 25, 3871–3880 (1986). [CrossRef] [PubMed]
  18. P. S. Theocaris, “Light scattering from laser-damage speckled surfaces,” Appl. Opt. 36, 8775–8784 (1997). [CrossRef]
  19. P. A. Temple, “Examination of laser damage sites of transparent surfaces and films using total internal reflection microscopy,” in Laser-Induced Damage in Optical Materials, Natl. Bur. Stand. (U.S.) Spec. Publ.568, 333–341 (1979).
  20. L. M. Sheehan, M. Kozlowski, D. W. Camp, “Application of total internal reflection microscopy for laser damage studies on fused silica,” in Laser-Induced Damage in Optical Materials: 1997, H. Bennett, A. Guenther, M. Kozlowski, B. Newnam, M. Soileau, eds. Proc. SPIE3244, 282–295 (1998).
  21. H. Bercegol, “Statistical distribution of laser damage and spatial scaling law for a model with multiple defects cooperation in damage,” in Laser-Induced Damage in Optical Materials: 1997, H. Bennett, A. Guenther, M. Kozlowski, B. Newnam, M. Soileau, eds., Proc. SPIE3244, 339–346 (1998).
  22. M. Commandre, P. Roche, “Characterization of optical coating by photothermal deflection,” Appl. Opt. 35, 5021–5034 (1996). [CrossRef]
  23. Z. Wu, M. Thomsen, P. Kuo, Y. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997). [CrossRef]
  24. M. Kozlowski, M. Staggs, M. Balooch, R. Tench, W. Siekhaus, “The surface morphology of as-deposited and laser-damaged dielectric mirror coating studied in situ by atomic force microscopy,” in Scanning Microscopy Instrumentation, G. S. Kino, ed., Proc. SPIE1556, 68–78 (1991).
  25. M. Yan, S. Oberhelman, W. Siekhaus, Z. L. Wu, L. Sheehan, M. Kozlowski, “Characterization of surface and subsurface defects in optical materials using near-field evanescent wave,” in Laser-Induced Damage in Optical Materials: 1998, H. Bennett, A. Guenther, M. Kozlowski, B. Newnam, M. Soileau, eds., Proc. SPIE3578, 718–720 (1999).
  26. J. Y. Natoli, C. Deumié, C. Amra, “Laser-modulated scattering from optical surfaces using fiber detection,” in Laser-Induced Damage in Optical Materials: 1999, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, M. Soileau, eds., Proc. SPIE3902, 128–137 (2000).
  27. F. Y. Genin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, J. Yoshiyama, “Rear surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particule,” Appl. Opt. 39, 3654–3663 (2000). [CrossRef]
  28. M. C. Staggs, M. R. Kozlowski, W. J. Sieklhaus, M. Balooch, “Correlation of damage threshold and surface geometry of nodular defects in HR coating as determined by in-situ atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1992, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. Soileau, eds., Proc. SPIE1884, 234–242 (1993).
  29. C. J. Stolz, J. M. Yoshiyama, A. Salleo, Z. L. Wu, J. Green, R. Krupka, “Characterization of nodular and thermal defects in hafnia/silica multilayer coating using optical, photothermal, and atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1997, H. Bennett, A. Guenther, M. Kozlowski, B. Newnam, M. Soileau, eds., Proc. SPIE3244, 475–483 (1998).
  30. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage thresholds at surfaces of transparent dielectrics,” Appl. Opt. 12, 661–664 (1973). [CrossRef] [PubMed]
  31. Z. L. Wu, C. J. Stolz, S. C. Weakley, J. D. Hughes, Q. Zhao, “Damage threshold prediction of hafnia-silica multiplayer coatings by nondestructive evaluation of fluence-limiting defects,” Appl. Opt. 40, 1897–1906 (2001). [CrossRef]
  32. J. Dijon, B. Raffin, C. Pellé, J. Hue, G. Ravel, B. André, “One hundred joule per square centimeter 1.06 micron mirrors,” in Laser-Induced Damage in Optical Materials: 1999, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, M. Soileau, eds., Proc. SPIE3902, 158–167 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited