OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 16 — Jun. 1, 2002
  • pp: 3355–3361

Silicone microlenses and interference gratings

Sergio Calixto  »View Author Affiliations

Applied Optics, Vol. 41, Issue 16, pp. 3355-3361 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (629 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Interference gratings, plano-convex microlenses, and spherical microlenses have been made in silicone. Lenses were fabricated by the melting method. Two substrates have been tried: glass and Teflon. The latter substrate lets us fabricate low-f-number lenses. We made spherical microlenses by placing pieces of silicone near a thermal source and studied resolution of the lenses by investigating the images they gave of a test chart. We made low-spatial-frequency gratings by recording interference patterns and studied parameters involved in the recording. A study of the profile of the gratings and lenses was done with a mechanical surface analyzer.

© 2002 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(350.3950) Other areas of optics : Micro-optics

Original Manuscript: August 29, 2001
Revised Manuscript: December 14, 2001
Published: June 1, 2002

Sergio Calixto, "Silicone microlenses and interference gratings," Appl. Opt. 41, 3355-3361 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. P. Herzig, ed., Micro-Optics Elements, Systems and Applications (Taylor & Francis, London, 1997).
  2. W. Royall Cox, T. Chen, D. J. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photon. News (June2001), pp. 32–35.
  3. D. Bishop, R. Giles, C. Roxlo, “Micromirrors relieve communications bottlenecks,” Photonics Spectra 34, 167–169 (2000).
  4. H. P. Herzig, ed., Micro-Optics Elements, Systems and Applications (Taylor & Francis, London, 1997), Chap. 4. See references therein.
  5. G. Odian, Principles of Polimerization (Wiley-Interscience, New York, 1991).
  6. Truper Company, Miguel de Cervantes 67, Postal code 11520, Mexico D.F., www.truper.com .
  7. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).
  8. S. Calixto, M. Ornelas, “Mid-infrared microlenses by the melting method,” Opt. Lett. 24, 1212–1214 (1998). [CrossRef]
  9. Federal Products Corporation, 1144 Eddy Street, Providence, R. I. 02940-9400.
  10. S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1325 (1993). [CrossRef]
  11. D. Hartmann, O. Kibuar, S. Esener, “Optimization and theoretical modeling of polymer microlens array fabricated with the hydrophobic effect,” Appl. Opt. 40, 2736–2746 (2001). [CrossRef]
  12. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966).
  13. Edmund Scientific Company, 101 East Gloucester Pike, Barrington, N.J. 08007-1380. Product #L38–256.
  14. J. Lewandowski, B. Mongeau, M. Cormier, “Real time interferometry using IR holography on oil films,” Appl. Opt. 23, 242–246 (1984). [CrossRef]
  15. R. Beaulieu, R. A. Lessard, R. A. Cormier, M. Blanchard, M. Rioux, “Pulsed ir holography on Takiwax films,” Appl. Opt. 17, 3619–3621 (1978). [CrossRef] [PubMed]
  16. S. Calixto, “Infrared recording and reconstruction of diffractive elements on thin films,” in Photopolymer Device Physics, Chemistry and Applications, R. A. Lessard, ed., Proc. SPIE1213, 32–38 (1990).
  17. S. Calixto, “Infrared recording with gelatin films,” Appl. Opt. 27, 1977–1983 (1988). [CrossRef] [PubMed]
  18. J. Upatnieks, A. Vander Lught, E. Leith, “Correction of lens aberrations by means of holograms,” Appl. Opt. 5, 589–593 (1966). [CrossRef] [PubMed]
  19. T. Stone, N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988). [CrossRef] [PubMed]
  20. F. Saber, J. Hans, C. R. Nijander, A. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994). [CrossRef]
  21. L. Goncalves Neto, L. Brassolatti Roberto, P. Verdonck, R. D. Mansano, G. A. Lirino, M. A. Stefani, “Design and fabrication of a hybrid diffractive optical device for multiple-line generation over a wide angle,” Appl. Opt. 40, 211–218 (2001). [CrossRef]
  22. S. Trout, H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng. 39, 290–298 (2000). [CrossRef]
  23. C. Croutxe-Barghon, O. Soppera, D. J. Lougnot, “Fabrication of microlenses by direct photo-induced crosslinking polymerization,” Appl. Surf. Sci. 168, 89–91 (2000). [CrossRef]
  24. S. Sirkova, M. Kavehrad, “Holographical optical receiver front end for wireless infrared indoor communications,” Appl. Opt. 40, 2828–2835 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited