OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 17 — Jun. 10, 2002
  • pp: 3412–3418

Birefringent filter synthesis by use of a digital filter design algorithm

Rui Hong Chu and Graham Town  »View Author Affiliations

Applied Optics, Vol. 41, Issue 17, pp. 3412-3418 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (142 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an efficient method for designing birefringent filters comprising a number of birefringent sections with equal length and arbitrary orientation between two polarizers and for producing a specified spectral response in transmission. The method uses a digital filter design algorithm (i.e., the Remez algorithm) to determine an optimal polynomial approximation to obtain a specified finite impulse response, and a layer-peeling algorithm to calculate the filter structure parameters. The design procedure is demonstrated for a 14-section bandpass filter with sidelobes below -40 dB. The influence of errors in length and orientation of the birefringent sections on the filter’s spectral response is also discussed.

© 2002 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(120.2440) Instrumentation, measurement, and metrology : Filters
(230.0230) Optical devices : Optical devices
(260.1440) Physical optics : Birefringence

Original Manuscript: November 8, 2001
Revised Manuscript: March 6, 2002
Published: June 10, 2002

Rui Hong Chu and Graham Town, "Birefringent filter synthesis by use of a digital filter design algorithm," Appl. Opt. 41, 3412-3418 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C. R. Acad. Sci. 197, 1593 (1933).
  2. I. Solc, “Birefringent chain filters,” J. Opt. Soc. Am. 55, 621–625 (1965). [CrossRef]
  3. C. S. Brown, J. F. Kuhl, M. A. El, “Polarization-maintaining fiber birefringent filter for WDM,” SPIE998Components for Fiber Optic Applications and Coherent Lightwave Communications, 270–275 (1988).
  4. Q. Zou, “A high-performance, liquid-crystal based optical tunable birefringent filter,” Conference Digest. 2000 Conference on Lasers and Electro-Optics Europe, (Optical Society of America, Washington, D.C., 2000) pp. 132.
  5. J. Minowa, Y. Fujii, “High performance bandpass filter for WDM transmission,” Appl. Opt. 23, 193–194 (1984). [CrossRef]
  6. N. Takato, T. Komonato, A. Sugita, K. Jinguji, H. Toba, M. Kawachi, “Silica-based integrated optic Mach-Zender multi/demultiplexer family with channel spacing of 0.01–250 nm,” IEEE J. Sel. Areas Commun. 8, 1120–1127 (1990). [CrossRef]
  7. A. d’Alessandro, D. A. Smith, J. E. Baran, “Multichannel operation of an integrated acoustooptic wavelength routing switch for WDM system,” IEEE Photon. Technol. Lett. 6, 390–393 (1994). [CrossRef]
  8. A. Carballar, M. A. Muriel, J. Azaña, “Fiber grating filter for WDM systems: an improved design,” IEEE Photon. Technol. Lett. 11, 694–696 (1999). [CrossRef]
  9. J. W. Evans, “Solc birefringent filter,” J. Opt. Soc. Am. 48, 142–145 (1958). [CrossRef]
  10. S. E. Harris, E. O. Ammann, I. C. Chang, “Optical network synthesis using birefringent crystals: I. Synthesis of lossless networks of equal-length crystals,” J. Opt. Soc. Am. 54, 1267–1279 (1964). [CrossRef]
  11. I. Schur, “Uber Potentzreihen, die im Innern des Einheitskreises Beschrankt Sind,” J. fur die Reine und Angewandte Mathematik 147, 205–232 (1917). (English translation reprinted in Operator Theory: Advances and Applications 18, 31–60 (1986).
  12. J. Pauly, P. Le Roux, Q. Nishimura, A. Macovski, “Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm,” IEEE Trans. Med. Imaging 10, 53–65 (1991). [CrossRef]
  13. T. W. Parks, C. S. Burrus, Digital Filter Design, (Wiley, New York, 1987).
  14. D. M. Etter, Engineering Problem Solving with matlab, (Prentice-Hall, Englewood Cliffs, N.J., 1993).
  15. R. J. Pegis, “An exact design method for multiplayer dielectric films,” J. Opt. Soc. Am. 51, 1255–1264 (1961). [CrossRef]
  16. L. R. Rabiner, B. Gold, Theory and Application of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited