OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 17 — Jun. 10, 2002
  • pp: 3469–3478

Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays

Rong Wang, Aleksandar D. Rakić, and Marian L. Majewski  »View Author Affiliations

Applied Optics, Vol. 41, Issue 17, pp. 3469-3478 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (325 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the design of free-space optical interconnects (FSOIs) based on arrays of vertical-cavity surface-emitting lasers (VCSELs), microlenses, and photodetectors. We explain the effect of the modal structure of a multimode VCSEL beam on the performance of a FSOI with microchannel architecture. A Gaussian-beam diffraction model is used in combination with the experimentally obtained spectrally resolved VCSEL beam profiles to determine the optical channel crosstalk and the signal-to-noise ratio (SNR) in the system. The dependence of the SNR on the feature parameters of a FSOI is investigated. We found that the presence of higher-order modes reduces the SNR and the maximum feasible interconnect distance. We also found that the positioning of a VCSEL array relative to the transmitter microlens has a significant impact on the SNR and the maximum feasible interconnect distance. Our analysis shows that the departure from the traditional confocal system yields several advantages including the extended interconnect distance and/or improved SNR. The results show that FSOIs based on multimode VCSELs can be efficiently utilized in both chip-level and board-level interconnects.

© 2002 Optical Society of America

OCIS Codes
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects

Original Manuscript: March 1, 2001
Revised Manuscript: January 2, 2002
Published: June 10, 2002

Rong Wang, Aleksandar D. Rakić, and Marian L. Majewski, "Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays," Appl. Opt. 41, 3469-3478 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, F. J. Leonberger, S. C. Kung, R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–866 (1984). [CrossRef]
  2. M. J. Goodwin, A. J. Moseley, M. Q. Kearley, R. C. Morris, C. J. G. Kirkby, J. Thompson, R. C. Goodfellow, I. Bennion, “Optoelectronic component arrays for optical interconnection of circuits and subsystems,” J. Lightwave Technol. 9, 1639–1644 (1991). [CrossRef]
  3. T. Sakano, T. Matsumoto, K. Noguchi, “Three-dimensional board-to-board free-space optical interconnection and their application to the prototype multiprocessor system: Cosine-III,” Appl. Opt. 34, 1815–1822 (1995). [CrossRef] [PubMed]
  4. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 VCSEL and metal-semiconductor-metal optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996). [CrossRef] [PubMed]
  5. T. Kurokawa, S. Matso, T. Nakahara, K. Tateno, Y. Ohiso, A. Wakatsuki, H. Tsuda, “Design approaches for VCSELs and VCSEL-based smart pixels toward parallel optoelectronic processing system,” Appl. Opt. 37, 194–204 (1998). [CrossRef]
  6. N. C. Craft, A. Y. Feldblum, “Optical interconnects based on arrays of surface-emitting lasers and lenslets,” Appl. Opt. 31, 1735–1739 (1992). [CrossRef] [PubMed]
  7. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnection using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992). [CrossRef]
  8. S. Tang, R. T. Chen, L. Garat, D. Gerold, M. M. Li, “Design limitation of highly parallel free-space optical interconnects based on arrays of VCSEL laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994). [CrossRef]
  9. J. Yeh, R. K. Kostuk, K. Tu, “Hybrid free-space optical bus system for board-to-board interconnections,” Appl. Opt. 35, 6354–6364 (1996). [CrossRef] [PubMed]
  10. M. A. Neifeld, R. K. Kostuk, “Error correction for free-space optical interconnects: space-time resource optimization,” Appl. Opt. 37, 296–307 (1998). [CrossRef]
  11. R. K. Kostuk, “Simulation of board-level free-space optical interconnects for electronic processing,” Appl. Opt. 31, 2438–2445 (1992). [CrossRef] [PubMed]
  12. J. M. Catchmark, L. E. Rogers, R. A. Morgan, M. T. Asom, G. D. Guth, D. N. Christomodulides, “Optical characteristics of multi-transverse mode 2-D vertical-cavity top surface-emitting laser arrays,” IEEE J. Quantum Electron. 32, 986–995 (1996). [CrossRef]
  13. E. M. Strzelecka, G. B. Thompson, G. D. Robinson, M. G. Peters, B. J. Thibeault, M. Mondry, V. Jayaraman, F. H. Peters, L. A. Coldren, “Monolithic integration of refractive lenses with vertical-cavity lasers and detectors for optical interconnections,” in Optoelectronic Packaging, M. R. Feldman, Y.-C. Lee, eds., Proc. SPIE2691, 43–54 (1996). [CrossRef]
  14. E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, L. A. Coldren, “Parallel free-space optical interconnect based on arrays of vertical cavity lasers and detectors with monolithic microlenses,” Appl. Opt. 37, 2811–2821 (1998). [CrossRef]
  15. R. Wang, A. D. Rakić, M. L. Majewski, “Analysis of lensless free-space optical interconnects based on multi-transverse mode vertical-cavity-surface-emitting lasers,” Opt. Commun. 167, 261–271 (1999). [CrossRef]
  16. A. E. Siegmann, Lasers, (University Science, Mill Valley, Calif., 1986), Chap. 17.
  17. P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications, (IEEE Press/Chapman & Hall Publishers Series on Microwave Technology, New York, 1998), Chap. 2. [CrossRef]
  18. F. A. Jenkins, H. A. White, Fundamentals of Optics, (McGraw-Hill, Inc., New York, 1976), Chap. 5.
  19. D. R. Hall, P. E. Jackson, eds., The Physics and Technology of Laser Resonators (Bristol, The Adam Hilger Series on Optics and Optoelectronics, 1989).
  20. P. Belland, J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982). [CrossRef] [PubMed]
  21. R. Borghi, M. Santarsiero, “M2 factor of Bessel–Gauss beams,” Opt. Lett. 22, 262–264 (1997). [CrossRef] [PubMed]
  22. S. E. Swirhun, R. P. Bryan, W. S. Fu, W. E. Quinn, J. L. Jewell, G. R. Olbright, “Commercial manufacturing of vertical-cavity surface-emitting laser arrays,” in Vertical-Cavity Surface-Emitting Laser Arrays, J. L. Jewell, ed., Proc. SPIE2147, 74–84 (1994). [CrossRef]
  23. V. E. Boros, A. D. Rakić, M. L. Majewski, “Measurement automation for characterising VCSELs,” in Conference on Optoelectronic and Microelectronic Materials and Devices COMMAD’98 (IEEE Press, New York, 1999), pp. 392–395.
  24. R. Michalzik, K. J. Ebeling, “Generalized BV diagrams for higher order transverse modes in planar vertical-cavity laser diodes,” IEEE J. Quantum Electron. 31, 1371–1379 (1995). [CrossRef]
  25. A. D. Rakić, V. B. Boros, M. I. Cohen, M. L. Majewski, “Cooperatively frequency-locked multimode operation in proton implanted VCSELs,” in Conference on Optoelectronic and Microelectronic Materials and Devices COMMAD’98 (IEEE Press, New York, 1999), pp. 116–119.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited