OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 18 — Jun. 20, 2002
  • pp: 3506–3510

Micro-electro-mechanical system-based digitally controlled optical beam profiler

Sarun Sumriddetchkajorn and Nabeel A. Riza  »View Author Affiliations

Applied Optics, Vol. 41, Issue 18, pp. 3506-3510 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (207 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical beam profiler is introduced that uses a two-dimensional (2-D) small-tilt micromirror device. Its key features include fast speed, digital control, low polarization sensitivity, and wavelength independence. The use of this 2-D multipixel device opens up the important possibility of realizing several beam profile measurement concepts, such as a moving knife edge, a scanning slit, a moving pinhole, a variable aperture, and a 2-D photodiode array. The experimental proof of the optical beam profiler concept using a 2-D digital micromirror device to simulate the 2-D moving knife edge indicates a small measurement error of 0.19% compared with the expected number based on a Gaussian beam-propagation analysis. Other 2-D pixel arrays such as a liquid-crystal-based 90° polarization rotator sandwiched between crossed polarizers can also be exploited for the optical beam whose polarization direction is known.

© 2002 Optical Society of America

OCIS Codes
(230.4040) Optical devices : Mirrors

Original Manuscript: October 24, 2001
Revised Manuscript: February 14, 2002
Published: June 20, 2002

Sarun Sumriddetchkajorn and Nabeel A. Riza, "Micro-electro-mechanical system-based digitally controlled optical beam profiler," Appl. Opt. 41, 3506-3510 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Arnaud, C. Neck, “Apparatus for locating and measuring the beam-waist radius of a Gaussian laser beam,” U.S. patent3,617,755 (2November1971).
  2. J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Clavière, E. A. Franke, J. M. Franke, “Technique for fast measurement of Gaussian laser beam parameters,” Appl. Opt. 10, 2775–2776 (1971). [CrossRef] [PubMed]
  3. T. F. Johnston, G. H. Williams, “Apparatus for measuring the mode quality of a laser beam,” U.S. patent5,064,284 (12November1991).
  4. P. J. Shayler, “Laser beam distribution in the focal region,” Appl. Opt. 17, 2673–2674 (1978). [CrossRef] [PubMed]
  5. P. J. Brannon, J. P. Anthes, G. L. Cano, J. E. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576–3579 (1975). [CrossRef]
  6. M. K. Giles, E. M. Kim, “Linear systems approach to fiber characterization using beam profile measurements,” in Fiber Optics: Short-Haul and Long-Haul Measurements and Applications II, R. L. Galawa, ed., Proc. SPIE500, 67–70 (1984). [CrossRef]
  7. C. P. Wang, “Measuring 2-D laser-beam phase and intensity profiles: a new technique,” Appl. Opt. 23, 1399–1402 (1984). [CrossRef] [PubMed]
  8. E. H. A. Granneman, M. J. van der Wiel, “Laser beam waist determination by means of multiphoton ionization,” Rev. Sci. Instrum. 46, 332–334 (1975). [CrossRef]
  9. S. M. Sorscher, M. P. Klein, “Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 51, 98–102 (1980). [CrossRef]
  10. J. T. Knudtson, K. L. Ratzlaff, “Laser beam spatial profile analysis using a two-dimensional photodiode array,” Rev. Sci. Instrum. 54, 856–860 (1983). [CrossRef]
  11. A. Rose, Y.-X. Nie, R. Gupta, “Laser beam profile measurement by photothermal deflection technique,” Appl. Opt. 25, 1738–1741 (1986). [CrossRef] [PubMed]
  12. T. Baba, T. Arai, A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57, 2739–2742 (1986). [CrossRef]
  13. N. A. Riza, S. Sumriddetchkajorn, “Digitally controlled fault-tolerant multiwavelength programmable fiber-optic attenuator using a two-dimensional digital micromirror device,” Opt. Lett. 24, 282–284 (1999). [CrossRef]
  14. R. L. Knipe, “Challenges of a digital micromirror device™: modeling and design,” in Micro-optical Technologies for Measurement, Sensors, and Microsystems, O. M. Parriaux, ed., Proc. SPIE2783, 135–145 (1996). [CrossRef]
  15. S. Sumriddetchkajorn, “Fiber-optic beam control systems using microelectromechanical systems (MEMS),” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 2000).
  16. J. T. Verdeyen, “Gaussian beams,” in Laser Electronics, 3rd ed., (Prentice-Hall, Englewood Cliffs, N.J., 1995), pp. 63–85.
  17. S. Yuan, N. A. Riza, “General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38, 3214–3222 (1999). [CrossRef]
  18. S. Yuan, N. A. Riza, “General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses: errata,” Appl. Opt. 38, 6292 (1999). [CrossRef]
  19. Gary Forrest, SensorPhysics Inc., Oldsmar,Fla. 34677 (personal communication, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited