OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 18 — Jun. 20, 2002
  • pp: 3523–3529

Bandpass-resampling effects for the retrieval of surface emissivity

Rudolf Richter and Cesar Coll  »View Author Affiliations


Applied Optics, Vol. 41, Issue 18, pp. 3523-3529 (2002)
http://dx.doi.org/10.1364/AO.41.003523


View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The retrieval of surface emissivity in the 8–14-µm region from remotely sensed thermal imagery requires channel-averaged values of atmospheric transmittance, path radiance, and downwelling sky flux. Bandpass resampling introduces inherent retrieval errors that depend on atmospheric conditions, spectral region, bandwidth, flight altitude, and surface temperature. This simulation study is performed for clear sky conditions and moderate atmospheric water vapor contents. It shows that relative emissivity retrieval errors can reach as much as 3% for broadband sensors (1–2-µm bandwidth) and 0.8% for narrowband instruments (0.15 µm), even for constant surface emissivity. For spectrally varying surface emissivities the relative retrieval error increases for the broadband instrument by ∼2% in channels with strong emissivity changes of 0.05–0.1. The corresponding retrieval errors for narrowband sensors increase by approximately 3–4%. The channels in the atmospheric window regions with lower transmittance, i.e., 8–8.5 and 12.5–14 µm, are most sensitive to retrieval errors.

© 2002 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.6780) Instrumentation, measurement, and metrology : Temperature
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: October 12, 2001
Revised Manuscript: February 26, 2002
Published: June 20, 2002

Citation
Rudolf Richter and Cesar Coll, "Bandpass-resampling effects for the retrieval of surface emissivity," Appl. Opt. 41, 3523-3529 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-18-3523


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Vincent, F. J. Thomson, “Rock type discrimination from ratioed infrared scanner images of Pisgah Crater, CA,” Science 175, 986–988 (1972). [CrossRef] [PubMed]
  2. R. J. P. Lyon, “Infrared spectral emittance in geologic mapping: airborne spectrometer data from Pisgah Crater, CA,” Science 175, 983–985 (1972). [CrossRef] [PubMed]
  3. K. Watson, “Geologic applications of thermal infrared images,” Proc. IEEE 63, 128–137 (1975). [CrossRef]
  4. A. F. H. Goetz, L. C. Rowan, “Geologic remote sensing,” Science 211, 781–791 (1981). [CrossRef] [PubMed]
  5. A. B. Kahle, D. P. Madura, J. M. Soha, “Middle infrared multispectral aircraft scanner data: analysis for geological applications,” Appl. Opt. 19, 2279–2290 (1980). [CrossRef] [PubMed]
  6. A. Gillespie, “Lithologic mapping of silicate rocks using TIMS,” in Proceedings of TIMS Data User’s Workshop, 15–18 June 1985, JPL Publ. 83-38 (Jet Propulsion Laboratory, Pasadena, Calif., 1986), pp. 29–44.
  7. C. J. Tucker, J. R. G. Townshend, T. E. Goff, “African land-cover classification using satellite data,” Science 227, 369–375 (1985). [CrossRef] [PubMed]
  8. J. C. Price, “The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation,” Water Resour. Res. 16, 787–795 (1980). [CrossRef]
  9. M. Matson, D. R. Wiesnet, “New database for climate studies,” Nature (London) 289, 451–456 (1981). [CrossRef]
  10. Y. Yamagushi, A. B. Kahle, H. Tsu, T. Kawakami, M. Pniel, “Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER),” IEEE Trans. Geosci. Remote Sens. 36, 1062–1071 (1998). [CrossRef]
  11. P. Strobl, A. Müller, D. Schläpfer, M. Schaepman, “Laboratory calibration and in-flight validation of the Digital Airborne Imaging Spectrometer DAIS 7915,” in Algorithms for Multispectral and Hyperspectral Imagery III, A. E. Iverson, S. S. Shen, eds., Proc. SPIE3071, 225–235 (1997). [CrossRef]
  12. C. Coll, V. Caselles, E. Rubio, F. Sospedra, E. Valor, “Temperature and emissivity separation from calibrated data of the Digital Airborne Imaging Spectrometer,” Remote Sens. Environ. 76, 250–259 (2000). [CrossRef]
  13. H. J. Kramer, Observation of the Earth and its Environment (Springer-Verlag, Berlin, 1996). [CrossRef]
  14. S. J. Hook, J. J. Myers, K. J. Thome, M. Fitzgerald, A. B. Kahle, “The MODIS/ASTER airborne simulator (MASTER)—a new instrument for earth science studies,” Remote Sens. Environ. 76, 93–102 (2001). [CrossRef]
  15. A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, A. B. Kahle, “A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36, 1113–1126 (1998). [CrossRef]
  16. R. Richter, “Bandpass-resampling effects on the retrieval of radiance and surface reflectance,” Appl. Opt. 39, 5001–5005 (2000). [CrossRef]
  17. J. W. Salibury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14-µm atmospheric window,” Remote Sens. Environ. 69, 197–214 (1992).
  18. R. Richter, “Derivation of temperature and emittance from airborne multispectral thermal infrared scanner data,” Infrared Phys. Technol. 35, 618–626 (1994). [CrossRef]
  19. K. Y. Kondratyev, Radiation in the Atmosphere (Academic, New York, 1969).
  20. A. Berk, G. P. Anderson, P. K. Acharya, J. H. Chetwynd, L. S. Bernstein, E. P. Shettle, M. W. Matthew, S. M. Adler-Golden, MODTRAN4 User’s Manual (Air Force Research Laboratory, Hanscom AFB, Mass., 2000).
  21. RSI (Research Systems Inc.), ENVI User’s Guide (Boulder, Colo., 1999), spec_lib/jhu_lib/minerals.sli .
  22. A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, S. M. Adler-Golden, “modtran cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998). [CrossRef]
  23. T. Cocks, R. Jenssen, A. Stewart, I. Wilson, T. Shields, “The HYMAP airborne hyperspectral sensor: the system, calibration and performance,” in Proceedings of the First EARSeL Workshop on Imaging Spectroscopy, 6–8 Oct. 1998 (Remote Sensing Laboratories, University of Zurich, Zurich, Switzerland, 1998), pp. 37–42.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited