OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 18 — Jun. 20, 2002
  • pp: 3530–3537

Radiometric calibration of an airborne CO2 pulsed Doppler lidar with a natural Earth surface

Dean R. Cutten, Jeffry Rothermel, Maurice A. Jarzembski, R. Michael Hardesty, James N. Howell, David M. Tratt, and Vandana Srivastava  »View Author Affiliations

Applied Optics, Vol. 41, Issue 18, pp. 3530-3537 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (478 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Radiometric calibration of an airborne CO2 pulsed Doppler lidar has been accomplished with surface retroreflection signals from the White Sands National Monument, New Mexico. Two circular passes were made at altitudes of 6.3 and 9.3 km. The computed calibration factors for both altitudes are in excellent agreement with the value derived from standard ground-based measurements involving a fixed sandpaper target of known reflectance. This finding corroborates a previous study that successfully calibrated an airborne cw Doppler lidar with a variety of natural Earth surfaces. The present results indicate that relatively uniform Earth surface targets can be used for in-flight calibration of CO2 pulsed airborne and, in principal, other infrared lidars.

© 2002 Optical Society of America

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering

Original Manuscript: September 24, 2001
Revised Manuscript: January 31, 2002
Published: June 20, 2002

Dean R. Cutten, Jeffry Rothermel, Maurice A. Jarzembski, R. Michael Hardesty, James N. Howell, David M. Tratt, and Vandana Srivastava, "Radiometric calibration of an airborne CO2 pulsed Doppler lidar with a natural Earth surface," Appl. Opt. 41, 3530-3537 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. T. Menzies, G. M. Ancellet, D. M. Tratt, M. G. Wurtele, J. C. Wright, W. Pi, “Altitude and seasonal characteristics of aerosol backscatter at thermal IR wavelengths using lidar observations from coastal California,” J. Geophys. Res. 94, 9897–9908 (1989). [CrossRef]
  2. M. J. Post, C. J. Grund, A. O. Langford, M. H. Proffitt, “Observations of Pinatubo ejecta over Boulder, Colorado by lidars of three different wavelengths,” Geophys. Res. Lett. 19, 195–198 (1992). [CrossRef]
  3. R. T. Menzies, D. M. Tratt, “Airborne lidar observations of tropospheric aerosols during the Globe Backscatter Experiment (GLOBE) Pacific circumnavigation missions of 1989 and 1990,” J. Geophys. Res. 102, 3701–3714 (1997). [CrossRef]
  4. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997). [CrossRef] [PubMed]
  5. J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998). [CrossRef]
  6. J. N. Howell, J. Rothermel, D. M. Tratt, D. R. Cutten, L. Darby, R. M. Hardesty, “Multicenter airborne coherent atmospheric wind sensor (MACAWS) instrument: recent upgrades and results,” in Application of Lidar to Current Atmospheric Topics III, A. J. Sedlacek, K. W. Fischer, eds., Proc. SPIE3757, 6–17 (1999). [CrossRef]
  7. M. J. Kavaya, “The JPL lidar target calibration facility,” in Digest of Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1985), pp. 10–13.
  8. D. A. Haner, R. T. Menzies, “Reflectance characteristics of reference materials used in lidar hard target calibration,” Appl. Opt. 28, 857–864 (1989). [CrossRef] [PubMed]
  9. M. A. Jarzembski, V. Srivastava, “Comparison of continuous-wave CO2 lidar calibration by use of Earth-surface targets in laboratory and airborne measurements,” Appl. Opt. 37, 7120–7127 (1998). [CrossRef]
  10. M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990). [CrossRef] [PubMed]
  11. J. Y. Wang, “Heterodyne laser radar SNR from a diffuse target containing multiple glints,” Appl. Opt. 21, 464–476 (1982). [CrossRef] [PubMed]
  12. V. S. Rao Gudimetla, J. F. Holmes, “Probability density function of the intensity for a laser-generated speckle field after propagation through the atmosphere,” J. Opt. Soc. Am. 72, 1213–1218 (1982). [CrossRef]
  13. F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, W. O. Gallery, “Atmospheric transmittance/radiance-computer code LOWTRAN 7,” Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  14. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  15. Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of pulsed coherent lidars. 2: Applications,” Appl. Opt. 29, 4120–4132 (1990). [CrossRef] [PubMed]
  16. M. J. Kavaya, R. T. Menzies, “Lidar aerosol backscatter measurements: systematic, modeling, and calibration error considerations,” Appl. Opt. 24, 3444–3453 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited