OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 18 — Jun. 20, 2002
  • pp: 3547–3557

Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–Xexcitation

Wolfgang G. Bessler, Christof Schulz, Tonghun Lee, Jay B. Jeffries, and Ronald K. Hanson  »View Author Affiliations


Applied Optics, Vol. 41, Issue 18, pp. 3547-3557 (2002)
http://dx.doi.org/10.1364/AO.41.003547


View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three different high-pressure flame measurement strategies for NO laser-induced fluorescence (LIF) with AX(0,0) excitation have been studied previously with computational simulations and experiments in flames up to 15 bars. Interference from O2 LIF is a significant problem in lean flames for NO LIF measurements, and pressure broadening and quenching lead to increased interference with increased pressure. We investigate the NO LIF signal strength, interference by hot molecular oxygen, and temperature dependence of the three previous schemes and for two newly chosen excitation schemes with wavelength-resolved LIF measurements in premixed methane and air flames at pressures between 1 and 60 bars and a range of fuel/air ratios. In slightly lean flames with an equivalence ratio of 0.83 at 60 bars, the contribution of O2 LIF to the NO LIF signal varies between 8% and 29% for the previous schemes. The O2 interference is best suppressed with excitation at 226.03 nm.

© 2002 Optical Society of America

OCIS Codes
(280.1740) Remote sensing and sensors : Combustion diagnostics
(280.2470) Remote sensing and sensors : Flames
(300.2530) Spectroscopy : Fluorescence, laser-induced

History
Original Manuscript: September 25, 2001
Revised Manuscript: January 31, 2002
Published: June 20, 2002

Citation
Wolfgang G. Bessler, Christof Schulz, Tonghun Lee, Jay B. Jeffries, and Ronald K. Hanson, "Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–Xexcitation," Appl. Opt. 41, 3547-3557 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-18-3547


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature, and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).
  2. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994). [CrossRef]
  3. T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. ter Meerts, J. J. Meulen, “Imaging and post-processing of laser-induced flourescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997). [CrossRef]
  4. C. S. Cooper, N. M. Laurendeau, “Parametric study of NO production via quantitative laser-induced fluorescence in high-pressure, swirl-stabilized spray flames, in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 287–293. [CrossRef]
  5. J. E. Dec, R. E. Canaan, “PLIF imaging of NO formation in a DI Diesel engine,” SAE 980147 (Society of Automotive Engineers, Warrendale, Pa., 1998).
  6. A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995). [CrossRef]
  7. W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” SAE 2001-01-1978 (Society of Automotive Engineers, Warrendale, Pa., 2001). [CrossRef]
  8. F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1137–1144. [CrossRef]
  9. J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985). [CrossRef] [PubMed]
  10. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993). [CrossRef] [PubMed]
  11. W. G. Bessler, F. Hildenbrand, C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures of No-seeded flame.” Appl. Opt. 40, 748–756 (2001). [CrossRef]
  12. J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995). [CrossRef]
  13. F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001). [CrossRef]
  14. C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002). [CrossRef]
  15. C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., (1996), pp. 2597–2604. [CrossRef]
  16. G. Herzberg, Spectra of Diatomic Molecules, Vol. 1 of Molecular Spectra and Molecular Structure (Krieger, Malabar, Fla., 1950).
  17. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993). [CrossRef]
  18. B. R. Lewis, S. T. Gibson, P. M. Dooley, “Fine-structure dependence of predissociation linewidth in the Schumann-Runge bands of molecular oxygen,” J. Chem. Phys. 100, 7012–7035 (1994). [CrossRef]
  19. V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the B state of O2,” Chem. Phys. Lett. 249, 335–340 (1996). [CrossRef]
  20. M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994). [CrossRef]
  21. M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994). [CrossRef]
  22. A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A-X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).
  23. F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” Deutscher Flammentag, VDI-Gesellschaft Energietechnik-Düsseldorf, VDI Verlag 1492pp. 269–274 (1999),.
  24. C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,2) excitation,” Appl. Opt. 36, 3227–3232 (1997). [CrossRef] [PubMed]
  25. A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998). [CrossRef]
  26. A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X (0,0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995). [CrossRef]
  27. E. J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen, “Laser diagnostics in a diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–606 (2001). [CrossRef]
  28. B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995). [CrossRef]
  29. M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure flames,” Combust. Sci. Technol. 118, 257–283 (1996). [CrossRef]
  30. W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1995). [CrossRef]
  31. D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames,” Appl. Opt. 36, 3244–3252 (1997). [CrossRef] [PubMed]
  32. J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O2/N2 flames,” Combust. Flame 101, 141–152 (1995). [CrossRef]
  33. D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO + H2 + CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001). [CrossRef]
  34. T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992). [CrossRef]
  35. I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO(A2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982). [CrossRef]
  36. W. G. Bessler, C. Schulz, T. Lee, D. Shin (Stanford University), J. B. Jeffries, R. K. Hanson, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0,1) excitation,”
  37. We are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X(0,0), (0,1) and (0,2) excitation.”
  38. H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section (Ravello, Italy, 1989).
  39. L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2Σ+-X2II) transition,” J. Chem. Phys. 85, 2419–2422 (1986). [CrossRef]
  40. J. Warnatz, U. Maas, R. Dibble, Combustion (Springer-Verlag, Berlin, 1996). [CrossRef]
  41. A. V. Mokhov, H. B. Levinsky, C. E. van der Meij, “Temperature dependence of laser-induced fluorescence of nitric oxide in laminar premixed atmospheric-pressure flames,” Appl. Opt. 36, 3233–3243 (1997). [CrossRef] [PubMed]
  42. C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999). [CrossRef]
  43. V. Sick (Department of Mechanical Engineering, University of Michigan, Ann Arbor, Mich.), W. Bessler, C. Schulz are preparing a manuscript to be called “NO spectra simulation code.”
  44. P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Tranfer 57, 581–589 (1997). [CrossRef]
  45. C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Tranfer 48, 9–24 (1992). [CrossRef]
  46. P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quenching cross-section,” Sandia Rep. SAND94–8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).
  47. F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” SAE Tech. Paper 2001-01-3500 (Society of Automotive Engineers, Warrendale, Pa., 2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited