OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 18 — Jun. 20, 2002
  • pp: 3558–3566

Diffractive optical isolator made of high-efficiency dielectric gratings only

Tilman Glaser, Siegmund Schröter, Hartmut Bartelt, Hans-Jörg Fuchs, and Ernst-Bernhard Kley  »View Author Affiliations

Applied Optics, Vol. 41, Issue 18, pp. 3558-3566 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (1724 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The working principle of an optical isolator made of two corrugated dielectric gratings is introduced. One grating acts as a polarizer, and the other acts as a quarter-wave plate used in conical incidence converting linearly polarized light into circularly polarized light. Global maxima of diffraction efficiency for surface-corrugated gratings with binary, sinusoidal, and pyramidal ridge shapes with dependence on the material index are identified. Regarding technological feasibility for use in the visible wavelength range, high-frequency gratings with a binary shape were realized. With these gratings, an extinction ratio of more than 40 dB for the polarizer is theoretically possible, and more than 20 dB was experimentally achieved. A good correlation between theoretically calculated efficiencies and birefringences based on rigorous methods and the experimental results is demonstrated.

© 2002 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(230.1360) Optical devices : Beam splitters
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

Original Manuscript: September 18, 2001
Revised Manuscript: February 7, 2002
Published: June 20, 2002

Tilman Glaser, Siegmund Schröter, Hartmut Bartelt, Hans-Jörg Fuchs, and Ernst-Bernhard Kley, "Diffractive optical isolator made of high-efficiency dielectric gratings only," Appl. Opt. 41, 3558-3566 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Noponen, J. Turunen, “Binary high-frequency-carrier diffractive optical elements: electromagnetic theory,” J. Opt. Soc. Am. A 11, 1097–1109 (1994). [CrossRef]
  2. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980). [CrossRef]
  3. T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985). [CrossRef]
  4. L. Li, J. Chandezon, G. Granet, J.-P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999). [CrossRef]
  5. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  6. P. Lalanne, D. Lemercier-Lalanne, “Depth dependence of the effective properties of subwavelength gratings,” J. Opt. Soc. Am. A 14, 450–458 (1997). [CrossRef]
  7. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983). [CrossRef]
  8. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
  9. T. Shintaku, “Integrated optical isolator based on efficient nonreciprocal radiation mode conversion,” Appl. Phys. Lett. 73, 1946–1948 (1998). [CrossRef]
  10. I. K. Hwang, S. H. Yun, B. Y. Kim, “All-fiber-optic nonreciprocal modulator,” Opt. Lett. 22, 507–509 (1997). [CrossRef] [PubMed]
  11. W. Glaser, Photonik für Ingenieure, 1st ed. (Verlag Technik, Berlin, 1997).
  12. P. Lalanne, J. Hazart, P. Chaval, E. Cambril, H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A Pure Appl. Opt. 1, 215–219 (1999). [CrossRef]
  13. D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, R. Steingüber, “High-frequency gratings for applications to DVD pickup systems,” J. Opt. A Pure Appl. Opt. 3, 164–173 (2001). [CrossRef]
  14. G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrated imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999). [CrossRef]
  15. E. Hecht, Optik (Addison-Wesley, Bonn, 1989).
  16. B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999). [CrossRef]
  17. S. Astilean, P. Lalanne, P. Chavel, E. Cambril, H. Launois, “High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm,” Opt. Lett. 23, 552–554 (1998). [CrossRef]
  18. T. Glaser, S. Schröter, R. Pöhlmann, H. Bartelt, H.-J. Fuchs, “High-efficiency binary phase-transmission-grating using e-beam lithography,” J. Mod. Opt. 45, 1487–1494 (1998). [CrossRef]
  19. A. Smakula, “Verfahren zur Erhöhung der Lichtdurchlässigkeit optischer Teile durch Erniedrigung des Brechungsexponenten an den Grenzflächen dieser optischen Teile,” German patentDE685767 (1November1935).
  20. C. G. Bernhard, “Strukturelle and funktionelle Adaption in einem visuellen System,” Endeavour 26, 79–84 (1967).
  21. C. W. Haggans, L. Li, R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993). [CrossRef]
  22. E.-B. Kley, H.-J. Fuchs, K. Zoellner, “A fabrication technique for high-aspect-ratio gratings,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, E. G. Johnson, eds., Proc. SPIE3879, 71–78.
  23. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16, 1143–1156 (1999). [CrossRef]
  24. T. Glaser, S. Schröter, H. Bartelt, “Beam switching with binary single-order diffractive gratings,” Opt. Lett. 23, 1933–1935 (1998). [CrossRef]
  25. T. Glaser, S. Schröter, H. Bartelt, H.-J. Fuchs, E. B. Kley, “Experimental realization of a diffractive optical isolator,” in Micromachining Technology for Micro-Optics, S. H. Lee, E. G. Johnson, eds., SPIE4179, 158–167.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited