OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 18 — Jun. 20, 2002
  • pp: 3582–3589

Absolute solar transmittance interferometer for ground-based measurements

Toufic Hawat, Thomas Stephen, and Frank Murcray  »View Author Affiliations


Applied Optics, Vol. 41, Issue 18, pp. 3582-3589 (2002)
http://dx.doi.org/10.1364/AO.41.003582


View Full Text Article

Enhanced HTML    Acrobat PDF (175 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The absolute solar transmittance interferometer measures absolute solar radiance at the Earth’s surface. The instrument is based on a Fourier-transform spectrometer that utilizes a liquid-nitrogen-cooled InSb detector and appropriate optical bandpass filters. The recorded solar spectra are calibrated against National Institute of Standards and Technology traceable lamps and a blackbody source. The spectral range addressed by this instrument is from 1950 to 10100 cm-1 at a resolution of 2 cm-1. The optical design of the instrument and the experimental methods are discussed. A discussion of the uncertainties involving the instrument and the calibration sources is presented. Initial measurements from several sites are compared with atmospheric model calculations.

© 2002 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(280.1120) Remote sensing and sensors : Air pollution monitoring
(280.1310) Remote sensing and sensors : Atmospheric scattering
(300.6340) Spectroscopy : Spectroscopy, infrared

History
Original Manuscript: October 23, 2001
Revised Manuscript: March 11, 2002
Published: June 20, 2002

Citation
Toufic Hawat, Thomas Stephen, and Frank Murcray, "Absolute solar transmittance interferometer for ground-based measurements," Appl. Opt. 41, 3582-3589 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-18-3582


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Smith, D. Gottlieb, “Solar flux and its variations,” Space Sci. Rev. 16, 771–802 (1974). [CrossRef]
  2. J. Reagan, P. Pilewskie, I. Scott-Fleming, B. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. 25, 647–653 (1987). [CrossRef]
  3. G. Shaw, “Solar spectral irradiance and atmospheric transmission at Mauna Loa observatory,” Appl. Opt. 21, 2006–2011 (1982). [CrossRef] [PubMed]
  4. M. Thekaekara, R. Kruger, C. Duncan, “Solar irradiance measurements from a research aircraft,” Appl. Opt. 8, 1713–1732 (1969). [CrossRef] [PubMed]
  5. R. B. Lee, B. R. Barkstrom, R. D. Cess, “Characteristics of the Earth radiation budget experiment solar monitors,” Appl. Opt. 26, 3090–3096 (1987). [CrossRef]
  6. G. Thuillier, J. Goutail, P. Simon, R. Pastiels, D. Labs, H. Neckel, “Measurements of the solar spectral irradiance from 200 to 3000 nanometers,” Sol. Phys. 90, 205–207 (1984).
  7. A. Goldman, W. Schoenfeld, T. Stephen, F. Murcay, C. Rinsland, A. Barbe, A. Hamdouni, J.-M. Flaud, C. Camy-Peyret, “Isotopic ozone in the 5-micron region from high resolution balloon-borne and ground-based FTIR solar spectra,” J. Quant. Spectrosc. Radiat. Transfer 59, 231–244 (1998). [CrossRef]
  8. F. Ferlemann, N. Bauer, R. Fitzenberger, H. Harder, H. Osterkamp, D. Perner, U. Platt, M. Schneider, P. Vradelis, K. Pfeilsticker, “Differential optical absorption spectroscopy instrument for stratospheric balloon-borne trace-gas studies,” Appl. Opt. 39, 2377–2386 (2000). [CrossRef]
  9. P. Fogal, F. Murcray, “Derivation of temperature and humidity profiles from ground-based high-resolution infrared emission and transmission spectra,” in Satellite Remote Sensing of Clouds and the Atmosphere IV, J. E. Russell, ed., Proc. SPIE3867, 248–256 (1999). [CrossRef]
  10. F. Murcray, A. Goldman, J. Landry, T. Stephen, “O2 continuum: a possible explanation for the discrepancies between measured and modeled short-wave surface irradiances,” Geophys. Res. Lett. 24, 2315–2317 (1997). [CrossRef]
  11. F. J. Murcray, J. J. Kosters, R. D. Blatherwick, J. Olson, D. G. Murcray, “High resolution solar spectrometer system for measuring atmospheric constituents,” Appl. Opt. 29, 1520–1525 (1990). [CrossRef] [PubMed]
  12. O. White, ed., The Solar Output and Its Variation (Colorado Associated U. Press, Boulder, 1977).
  13. P. Jeseck, C. Camy-Peyret, S. Payan, T. Hawat, “Detector nonlinearity correction scheme for the LPMA balloonborne Fourier transform spectrometer,” Appl. Opt. 37, 6544–6549 (1998). [CrossRef]
  14. J. Walker, R. Saunders, J. Jackson, K. Mielenz, “Results of a CCPR intercomparison of spectral irradiance measurements by national laboratories,” J. Res. Natl. Inst. Stand. Technol. 96, 647–668 (1991). [CrossRef]
  15. W. Schneider, D. Goebel, “Standard for calibration of optical radiation measurement systems,” Optronic Laboratories, Inc., 4632 36th Street, Orlando, Fla. 32811 (report of calibration, personal communication, 2000).
  16. R. H. Norton, R. Beer, “New apodizing functions for Fourier spectrometry,” J. Opt. Soc. Am. 66, 259–264 (1976). [CrossRef]
  17. E. Mlawer, S. Clough, P. Brown, T. Stephen, J. Landry, A. Goldman, F. Murcray, “Observed atmospheric collision-induced absorption in near-infrared oxygen bands,” J. Geophys. Res. 103, 3859–3863 (1998). [CrossRef]
  18. S. A. Clough, M. J. Iacono, “Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995). [CrossRef]
  19. J. Olson, J. Van Allen, P. Fogal, F. Murcray, A. Goldman, “Calibrated 0.1- cm-1 IR emission spectra from 80° N,” Appl. Opt. 35, 2797–2801 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited