OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 18 — Jun. 20, 2002
  • pp: 3601–3612

Thermo-Optic Design for Microwave and Millimeter-Wave Electromagnetic Power Microsensors

Salvatore Grasso, Marco Bellucci, Giuseppe Cocorullo, Francesco G. Della Corte, Mario Iodice, and Ivo Rendina  »View Author Affiliations

Applied Optics, Vol. 41, Issue 18, pp. 3601-3612 (2002)

View Full Text Article

Acrobat PDF (250 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Rendina et al. recently proposed the original configuration of an electromagnetic power sensor for microwaves and millimeter waves that is based on an optically interrogated all-silicon chip [Electron. Lett. 35, 1748 (1999)]. Here we theoretically analyze and discuss in detail the performances of such a new class of nonperturbing and wideband probe in terms of sensitivity, resolution, intrinsic detectivity, linearity, and response time. Good agreement between theory and experiments is demonstrated. In particular, minimum resolutions of ~1 mW/cm2 are obtained at frequencies beyond 10 GHz. The dependence of response on the geometrical and electromagnetic parameters of the sensing element is analyzed, and on this basis the possibility of achieving optimized configurations is discussed.

© 2002 Optical Society of America

OCIS Codes
(040.6040) Detectors : Silicon
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(130.6010) Integrated optics : Sensors
(350.4010) Other areas of optics : Microwaves

Salvatore Grasso, Marco Bellucci, Giuseppe Cocorullo, Francesco G. Della Corte, Mario Iodice, and Ivo Rendina, "Thermo-Optic Design for Microwave and Millimeter-Wave Electromagnetic Power Microsensors," Appl. Opt. 41, 3601-3612 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Kanda and L. D. Driver, “An isotropic electric-field probe with tapered resistive dipoles for broad-band use,” IEEE Trans. Microwave Theory Tech. MTT-35, 124–130 (1987).
  2. T. Matsui and I. Yokoshima, “Characteristic of a FET electric field sensor,” in National Conference Record 2692 (Institute of Electronics, Information and Communication Engineers, Japan, 1986).
  3. L. Brunetti, “Thin-film bolometer for high-frequency metrology,” Sensors Actuators A 32, 423–427 (1992).
  4. M. Tokuda and N. Kuwabara, “Recent progress in fiber optic antennas for EMC measurement,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 75B, 107–113 (1992).
  5. D. H. Naghski, J. T. Boyd, H. E. Jackson, S. Sriram, S. A. Kingsley, and J. Latess, “An integrated photonic Mach-Zehnder interferometer with no electrodes for sensing electric fields,” J. Lightwave Technol. 12, 1092–1097 (1994).
  6. T. Meier, C. Kostrzewa, K. Petermann, and B. Schuppert, “Integrated optical E-field probes with segmented modulator electrodes,” J. Lightwave Technol. 12, 1497–1503 (1994).
  7. R. Heinzelmann, A. Stohr, M. Gross, D. Kalinowski, T. Alder, M. Schmidt, and D. Jager, “Optically powered remote optical field sensor system using an electroabsorption-modulator,” presented at the IEEE MTT-S International Microwave Symposium, Baltimore, Md., 7–12 June 1998.
  8. R. Heinzelmann, A. Stohr, D. Kalinowski, and D. Jager, “Miniaturized fiber-coupled RF E-field sensor with high sensitivity,” in Proceedings of the Laser and Electro-Optics Society (LEOS) 2000 Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 2000), pp. 525–526.
  9. J. Randa, M. Kanda, and R. D. Orr, “Thermo-optic designs for electromagnetic field probes for microwave and millimeter-wave,” IEEE Trans. Electromagn. Compat. 33, 205–214 (1991).
  10. T. Nagatsuma, N. Sahri, M. Yaita, T. Ishibashi, N. Shimizu, and K. Sato, “All optoelectronic generation and detection of millimeter-wave signals,” in International Topical Meeting on Microwave Photonics (1998), pp. 5–8.
  11. T. Otsuji, K. Kato, S. Kimura, and T. Nagatsuma, “Wide-band high-efficiency optical-to-electrical conversion stimulus probe heads for testing large-signal responses of high-speed electronic devices,” IEEE Trans. Microwave Theory Tech. 47, 525–533 (1999).
  12. I. Rendina, F. G. Della “All-silicon optically-interrogated power sensor for microwaves and millimetre waves,” Electron. Lett. 35, 1748–1749 (1999).
  13. G. Cocorullo, F. G. Della “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE Trans. Electron. Devices 44, 766–774 (1997).
  14. F. G. Della “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119 (2000).
  15. D. S. Jones, The Theory of Electromagnetism (Pergamon, London, 1964), 528–532.
  16. Ansys Release 5.5 engineering simulation software, ANSYS, Inc. Canonsburg, Pa.
  17. Properties of Silicon, Vol. 4 of EMIS Data Reviews Series (Institute of Electrical Engineers, London, 1998), pp. 3–6 and 35–39.
  18. M. Iodice, “Analisi, progetto e realizzazione di nuovi modulatori in silicio per applicazioni optoelettroniche,” Ph.D. dissertation (University of Naples “Federico II,” Naples, Italy, 1998).
  19. M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1980).
  20. J. B. Kumer and T. C. James, “Effect of substrate absorption on the performance of solid Fabry–Perot etalons,” Appl. Opt. 27, 4800–4801 (1988).
  21. G. Hernandez, “Fabry-Perot with an absorbing etalon cavity,” Appl. Opt. 24, 3062–3067, (1985).
  22. G. Cocorullo, F. G. Della “New possibilities for efficient silicon integrated electro-optical modulators,” Opt. Commun. 86, 228–235 (1991).
  23. S. Solimeno, B. Crosignani, and P. Di Porto, Guiding, Diffraction and Confinement of Optical Radiation (Academic, Orlando, Fla., 1986).
  24. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23, 123–129 (1987).
  25. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28, 83–84 (1992).
  26. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991).
  27. R. Dändliker, K. Hug, J. Politch, and E. Zimmermann, “High accuracy distance measurements with multiple-wavelength interferometry,” Opt. Eng. 34, 2407–2412 (1995).
  28. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Tokyo, 1988).
  29. A. Giazotto, “Interferometric detection of gravitational waves,” Phys. Rep. 182, 365–424 (1989).
  30. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford U. Press, Oxford, 2000).
  31. A. Van der Ziel, Noise in Solid State Devices and Circuits (Wiley, New York, 1986).
  32. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1981).
  33. G. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermooptical micromodulator with 700-kHz–3-dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited