OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 18 — Jun. 20, 2002
  • pp: 3613–3621

Tunable diode laser absorption spectroscopy in coiled hollow optical waveguides

Gregory J. Fetzer, Anthony S. Pittner, William L. Ryder, and Dorothy A. Brown  »View Author Affiliations

Applied Optics, Vol. 41, Issue 18, pp. 3613-3621 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (677 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate tunable diode laser absorption spectroscopy of CO2 and NH3 near 1.5 µm using a distributed feedback diode laser in conjunction with hollow optical waveguides as long-path sample cells. The waveguides are coiled to reduce the physical extent of the system. The small volume of the waveguide provides rapid instrument response to changes in gas concentration. To reduce the pressure drop associated with long lengths and high flow rates, we perforate the waveguides in a novel geometry providing parallel pneumatic paths while maintaining optical path length. A minimum detectable absorbance of 3.5 × 10-5 in a 3-m section of waveguide is demonstrated.

© 2002 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6380) Spectroscopy : Spectroscopy, modulation

Original Manuscript: October 24, 2001
Revised Manuscript: March 12, 2002
Published: June 20, 2002

Gregory J. Fetzer, Anthony S. Pittner, William L. Ryder, and Dorothy A. Brown, "Tunable diode laser absorption spectroscopy in coiled hollow optical waveguides," Appl. Opt. 41, 3613-3621 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. For use of TDLAS for atmospheric measurements, see H. I. Schiff, G. I. Mackay, J. Bechara, “The use of TDLAS for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, Vol. 127 of Chemical Analysis Series, M. W. Sigrist, ed. (Wiley, New York, 1994), pp. 239–333.
  2. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B. 26, 203–210 (1981). [CrossRef]
  3. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997). [CrossRef]
  4. D. R. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964). [CrossRef]
  5. J. H. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942). [CrossRef]
  6. Monitor Labs, ML9830 data sheet (Monitor Labs Inc., Englewood, Colo., (1995).
  7. Monitor Labs, ML9820 data sheet (Monitor Labs Inc., Englewood, Colo., (1995).
  8. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt Lett. 19, 1034–1037 (1994). [CrossRef] [PubMed]
  9. Y. Matsuura, M. Miyagi, “Flexible hollow waveguides for delivery of excimer-laser light,” Opt. Lett. 23, 1226–1228 (1998). [CrossRef]
  10. J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE Proc.2396, 4–14 (1995). [CrossRef]
  11. Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995). [CrossRef] [PubMed]
  12. J. Clarkin, Polymicro Technologies, 18019 N. 25th Ave., Phoenix, Ariz. 85023–1200 (personal communication, 2000).
  13. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984). [CrossRef]
  14. M. Miyagi, “Bending losses in hollow and dielectric tube leaky waveguides,” Appl. Opt. 29, 367–370 (1990). [CrossRef] [PubMed]
  15. S. Sato, M. Saito, M. Miyagi, “Infrared hollow waveguides for capillary flow cells,” Appl. Spectrosc. 47, 1665–1669 (1993). [CrossRef]
  16. C. A. Worrell, I. P. Giles, N. A. Adatia, “Remote gas sensing with mid-infra-red hollow waveguide,” Electron, Lett. 28, 615–617 (1992). [CrossRef]
  17. R. L. Kozodoy, R. H. Micheels, J. A. Harrington, “Small-bore hollow waveguide infrared absorption cells for gas sensing,” Appl. Spectrosc. 50, 415–417 (1996). [CrossRef]
  18. D. J. Haan, D. J. Gibson, C. D. Rabii, J. A. Harrington, “Coiled hollow waveguides for gas sensing,” in Surgical Assist Systems, M. Bogner, S. T. Charles, W. S. Grundfest, J. A. Harrington, A. Katzir, L. S. Lome, M. W. Vannier, R. Von Hanwehr, eds., Proc. SPIE3262, 125–129 (1998). [CrossRef]
  19. L. Hvozdara, S. Gianordoli, G. Strasser, W. Schrenk, K. Unterrainer, E. Gornik, C. S. S. S. Murthy, V. Pustogow, B. Mizaikoff, A. Inberg, N. Croitoru, “Spectroscopy in the gas phase with GaAs/AlGaAs quantum-cascade lasers,” Appl. Opt. 39, 6926–6930 (2000). [CrossRef]
  20. N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt. 31, 3409–3415 (1992). [CrossRef] [PubMed]
  21. R. K. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998). [CrossRef]
  22. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  23. L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993). [CrossRef]
  24. M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 µm with diode-laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited