OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 18 — Jun. 20, 2002
  • pp: 3638–3649

Bistatic receiver model for airborne lidar returns incident on an imaging array from underwater objects

Nail Çadallı, David C. Munson, Jr., and Andrew C. Singer  »View Author Affiliations


Applied Optics, Vol. 41, Issue 18, pp. 3638-3649 (2002)
http://dx.doi.org/10.1364/AO.41.003638


View Full Text Article

Enhanced HTML    Acrobat PDF (206 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a bistatic model for airborne lidar returns collected by an imaging array from underwater objects, incorporating additional returns from the surrounding water medium and ocean bottom. Our results provide a generalization of the monostatic model by Walker and McLean. In the bistatic scheme the transmitter and receiver are spatially separated or are not coaligned. This generality is necessary for a precise description of an imaging array such as a CCD, which may be viewed as a collection of receiver elements, with each transmitter-element pair forming a bistatic configuration. More generally, the receiver may consist of photomultiplier tubes, photodiodes, or any of a variety of optical receivers, and the imaging array can range in size from a CCD array to a multiple-platform airborne lidar system involving multiple aircraft. The majority of this research is devoted to a derivation of the bistatic lidar equations, which account for multiple scattering and absorption in the water column. We then describe the application of these equations to the modeling and simulation of an imaging array. We show an example of a simulated lidar return and compare it with a real ocean lidar return, obtained by a CCD array.

© 2002 Optical Society of America

OCIS Codes
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(030.5620) Coherence and statistical optics : Radiative transfer
(040.1520) Detectors : CCD, charge-coupled device
(290.4210) Scattering : Multiple scattering

History
Original Manuscript: May 23, 2001
Revised Manuscript: November 16, 2001
Published: June 20, 2002

Citation
Nail Çadallı, David C. Munson, and Andrew C. Singer, "Bistatic receiver model for airborne lidar returns incident on an imaging array from underwater objects," Appl. Opt. 41, 3638-3649 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-18-3638

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited