OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 18 — Jun. 20, 2002
  • pp: 3685–3699

Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding

Igor Veselovskii, Alexei Kolgotin, Vadim Griaznov, Detlef Müller, Ulla Wandinger, and David N. Whiteman  »View Author Affiliations

Applied Optics, Vol. 41, Issue 18, pp. 3685-3699 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an inversion algorithm for the retrieval of particle size distribution parameters, i.e., mean (effective) radius, number, surface area, and volume concentration, and complex refractive index from multiwavelength lidar data. In contrast to the classical Tikhonov method, which accepts only that solution for which the discrepancy reaches its global minimum, in our algorithm we perform the averaging of solutions in the vicinity of this minimum. This averaging stabilizes the underlying ill-posed inverse problem, particularly with respect to the retrieval of number concentration. Results show that, for typical tropospheric particles and 10% error in the optical data, the mean radius could be retrieved to better than 20% from a lidar on the basis of a Nd:YAG laser, which provides a combination of backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The accuracy is improved if the lidar is also equipped with a hydrogen Raman shifter. In this case two additional backscatter coefficients at 416 and 683 nm are available. The combination of two extinction coefficients and five backscatter coefficients then allows one to retrieve not only averaged aerosol parameters but also the size distribution function. There was acceptable agreement between physical particle properties obtained from the evaluation of multiwavelength lidar data taken during the Lindenberg Aerosol Characterization Experiment in 1998 (LACE 98) and in situ data, which were taken aboard aircraft.

© 2002 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.3920) Atmospheric and oceanic optics : Meteorology
(280.1100) Remote sensing and sensors : Aerosol detection
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3640) Remote sensing and sensors : Lidar
(290.1090) Scattering : Aerosol and cloud effects

Original Manuscript: October 5, 2001
Revised Manuscript: January 3, 2002
Published: June 20, 2002

Igor Veselovskii, Alexei Kolgotin, Vadim Griaznov, Detlef Müller, Ulla Wandinger, and David N. Whiteman, "Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding," Appl. Opt. 41, 3685-3699 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Twomey, “Influence of pollution on shortwave albedo of clouds,” J. Atmos. Sci. 34, 1149–1152 (1977). [CrossRef]
  2. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, D. Xiaosu, eds., “Third Assessment Report of Working Group I of the Intergovernmental Panel on Climate Change” (Cambridge University, Cambridge, England, 2001).
  3. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Direct Measurements (Elsevier, New York, 1977).
  4. A. N. Tikhonov, V. Y. Arsenin, eds., Solution of Ill-Posed Problems (Wiley, New York, 1977).
  5. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976). [CrossRef]
  6. M. D. King, “Sensitivity of constrained linear inversions to the selection of the Lagrange multiplier,” J. Atmos. Sci. 39, 1356–1369 (1982). [CrossRef]
  7. A. Tarantola, Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation (Elsevier, Amsterdam, 1987).
  8. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in FORTRAN; the Art of Scientific Computing (Cambridge University, Cambridge, England, 1992).
  9. O. Dubovik, M. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105, D16, 20673–20696 (2000). [CrossRef]
  10. V. E. Zuev, I. E. Naats, eds., Inverse Problems of Lidar Sensing of the Atmosphere (Springer-Verlag, Berlin, 1983). [CrossRef]
  11. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef] [PubMed]
  12. J. Hadamard, “Sur les problémes aux derivees parielies et leur signification physique,” Bull. Univ. Princeton49–52 (1929).
  13. D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999). [CrossRef]
  14. C. Böckmann, “Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions,” Appl. Opt. 40, 1329–1342 (2001). [CrossRef]
  15. D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358–2368 (1999). [CrossRef]
  16. G. Beyerle, R. Neuber, O. Schrems, F. Wittrock, B. Knudsen, “Multiwavelength lidar measurements of stratospheric aerosols above Spitsbergen during winter 1992/93,” Geophys. Res. Lett. 21, 57–60 (1994). [CrossRef]
  17. G. Feingold, C. J. Grund, “Feasibility of using multiwavelength lidar measurements to measure cloud condensation nuclei,” J. Atmos. Oceanic Technol. 11, 543–1558 (1994). [CrossRef]
  18. B. Stein, M. Del Guasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, L. Wöste, “Stratospheric aerosol size distribution from multispectral lidar measurements at Sodankylä during EASOE,” Geophys. Res. Lett. 21, 1311–1314 (1994). [CrossRef]
  19. U. Wandinger, A. Ansmann, J. Reichardt, T. Deshler, “Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar,” Appl. Opt. 34, 8315–8329 (1995). [CrossRef] [PubMed]
  20. M. J. Post, “A graphical technique for retrieving size distribution parameters from multiple measurements: visualization and error analysis,” J. Atmos. Oceanic Technol. 13, 863–873 (1996). [CrossRef]
  21. D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Oceanic Technol. 17, 1469–1482 (2000). [CrossRef]
  22. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992). [CrossRef] [PubMed]
  23. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosols extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992). [CrossRef]
  24. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, Y. J. Kaufman, “Raman lidar measurements of aerosol extinction and backscattering. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements,” J. Geophys. Res. 103, D16, 19673–19689 (1998). [CrossRef]
  25. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef] [PubMed]
  26. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990). [CrossRef] [PubMed]
  27. D. Müller, F. Wagner, U. Wandinger, A. Ansmann, M. Wendisch, D. Althausen, W. von Hoyningen-Huene, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: experiment,” Appl. Opt. 39, 1879–1892 (2000). [CrossRef]
  28. J. Heintzenberg, H. Müller, H. Quenzel, E. Thomalla, “Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm,” Appl. Opt. 20, 1308–1315 (1981). [CrossRef] [PubMed]
  29. D. P. Donovan, A. I. Carswell, “Principal component analysis applied to multiwavelength lidar aerosol backscatter and extinction measurements,” Appl. Opt. 36, 9406–9424 (1997). [CrossRef]
  30. V. V. Veretennikov, V. S. Kozlov, I. E. Naats, V. Ya. Fadeev, “Optical studies of smoke aerosols: an inversion method and its applications,” Opt. Lett. 4, 411–413 (1979). [CrossRef] [PubMed]
  31. A. P. Ivanov, F. P. Osipenko, A. P. Chaykovskiy, V. N. Shcherbakov, “Study of the aerosol optical properties and microstructure by the method of multiwave sounding,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 22, 633–639 (1986).
  32. P. Qing, H. Nakane, Y. Sasano, S. Kitamura, “Numerical simulation of the retrieval of aerosol size distribution from multiwavelength laser radar measurements,” Appl. Opt. 28, 5259–5265 (1989). [CrossRef] [PubMed]
  33. D. Müller, F. Wagner, D. Althausen, U. Wandinger, A. Ansmann, “Physical properties of the Indian aerosol plume derived from six-wavelength lidar observation on 25 March 1999 of the Indian Ocean Experiment,” Geophys. Res. Lett. 27, 1403–1406 (2000). [CrossRef]
  34. A. Ansmann, D. Althausen, U. Wandinger, K. Franke, D. Müller, F. Wagner, J. Heintzenberg, “Vertical profiling of Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study,” Geophys. Res. Lett. 27, 963–966 (2000). [CrossRef]
  35. D. Müller, U. Wandinger, D. Althausen, M. Fiebig, “Comprehensive particle characterization from three-wavelength Raman-lidar observations: case study,” Appl. Opt. 34, 4863–4869 (2001). [CrossRef]
  36. J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European Aerosol Research Lidar Network,” in Laser Remote Sensing of the Atmosphere. Selected papers of the 20th International Laser Radar Conference, Vichy, France, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Paris, France, 2001).
  37. U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res., accepted for publication.
  38. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  39. G. H. Golub, M. Heath, G. Wahba, “Generalized cross-validation as a method for choosing a good ridge parameter,” Technometrics 21, 215–223 (1979). [CrossRef]
  40. F. O’Sullivan, “A statistical perspective on ill-posed inverse problems,” Stat. Sci. 1, 502–527 (1986). [CrossRef]
  41. P. C. Sabatier, “Basic concepts and methods of inverse problems,” in Basic Methods of Tomography and Inverse Problems, P. C. Sabatier, ed. (Hilger, London, 1987).
  42. A. Ansmann, U. Wandinger, A. Wiedensohler, U. Leiterer, “Lindenberg Aerosol Characterization Experiment 1998 (LACE 98): overview,” J. Geophys. Res., accepted for publication.
  43. M. Fiebig, A. Petzold, U. Wandinger, M. Wendisch, C. Kiemle, A. Stifter, M. Ebert, T. Rother, U. Leiterer, “Optical closure for an aerosol column: method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing,” J. Geophys. Res., accepted for publication.
  44. S. H. Melfi, K. D. Evans, J. Li, D. Whiteman, R. Ferrare, G. Schwemmer, “Observation of Raman scattering by cloud droplets in the atmosphere,” Appl. Opt. 36, 3551–3559 (1997). [CrossRef] [PubMed]
  45. I. A. Veselovskii, H. K. Cha, D. H. Kim, S. C. Choi, J. M. Lee, “Raman lidar for the study of liquid water and water vapor in the troposphere,” Appl. Phys. B 71, 113–117 (2000). [CrossRef]
  46. D. N. Whiteman, S. H. Melfi, “Cloud liquid water, mean droplet radius and number density measurements using a Raman lidar,” J. Geophys. Res. 104, D24, 31411–31419 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited