OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 18 — Jun. 20, 2002
  • pp: 3706–3724

Low-altitude infrared propagation in a coastal zone: refraction and scattering

Stephen M. Doss-Hammel, Carl R. Zeisse, Amalia E. Barrios, Gerrit de Leeuw, Marcel Moerman, Arie N. de Jong, Paul A. Frederickson, and Kenneth L. Davidson  »View Author Affiliations

Applied Optics, Vol. 41, Issue 18, pp. 3706-3724 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (2130 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Midwave and long-wave infrared propagation were measured in the marine atmosphere close to the surface of the ocean. Data were collected near San Diego Bay for two weeks in November 1996 over a 15-km horizontal path. The data are interpreted in terms of effects expected from molecules, aerosol particles, and refraction. Aerosol particles are a dominant influence in this coastal zone. They induce a diurnal variation in transmission as their character changes with regular changes in wind direction. A refractive propagation factor calculation is introduced, and it is systematically applied to the model and to the data analysis. It is shown that this refractive propagation factor is a necessary component of a complete near-sea-surface infrared transmission model.

© 2002 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(010.4030) Atmospheric and oceanic optics : Mirages and refraction
(290.4020) Scattering : Mie theory

Original Manuscript: August 9, 2001
Revised Manuscript: January 31, 2002
Published: June 20, 2002

Stephen M. Doss-Hammel, Carl R. Zeisse, Amalia E. Barrios, Gerrit de Leeuw, Marcel Moerman, Arie N. de Jong, Paul A. Frederickson, and Kenneth L. Davidson, "Low-altitude infrared propagation in a coastal zone: refraction and scattering," Appl. Opt. 41, 3706-3724 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. B. Matthews, B. E. Williams, A. Akkerman, J. Rosenthal, R. de Violini, “Atmospheric transmission and supporting meteorology in the marine environment at San Nicolas Island,” Tech. Rep. TP-79-19 (Pacific Missile Test Center, Pt. Mugu, Calif., 1978).
  2. G. B. Matthews, “Comparisons of atmospheric transmittance and visibility data collected at San Nicolas Island during the May 1979 OSP/EOMET high mode operation,” Tech. Rep. TP-82-16 (Pacific Missile Test Center, Pt. Mugu, Calif., 1982).
  3. S. G. Gathman, “Optical properties of the marine aerosol as predicted by the Navy Aerosol Model,” Opt. Eng. 22, 57–62 (1983). [CrossRef]
  4. D. E. Kerr, Propagation of Short Radio Waves (McGraw-Hill, New York, 1951).
  5. D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, “Electro-optical propagation assessment in coastal environments (EOPACE) overview and initial accomplishments,” Opt. Eng. 40, 1486–1498 (2001). [CrossRef]
  6. All times in this paper are in universal time.
  7. One of the parameters required by the Navy Aerosol Model is derived from radon activity.
  8. A. N. de Jong, P. J. Fritz, “EOPACE transmission experiments spring 1996; preliminary results,” Tech. Rep. FEL-96-A090 (TNO Physics and Electronics Laboratory, The Hague, The Netherlands, 1997), pp. 1–46.
  9. A. N. de Jong, P. J. Fritz, M. M. Moerman, M. J. J. Roos, “Transmission experiments during EOPACE, November 1996 and August/September 1997; preliminary results,” Tech. Rep. FEL-96-A269 (TNO Physics and Electronics Laboratory, The Hague, The Netherlands, 1998), p. 13 ff.
  10. H. U. Sverdrup, M. W. Johnson, R. H. Fleming, The Oceans, Their Physics, Chemistry, and General Biology (Prentice-Hall, Englewood Cliffs, N. J., 1942), p. 128.
  11. C. R. Zeisse, B. D. Nener, R. V. Dewees, “Measurement of low-altitude infrared propagation,” Appl. Opt. 39, 873–886 (2000), Fig. 4.
  12. Models CSASP-200 and CSASP-100-HV, Particle Measuring Systems Inc., 5475 Airport Blvd., Boulder, Colo. 80301-2339.
  13. S. G. Gathman, “The effects of the marine aerosol on infrared propagation over the world ocean,” Oceanologia 41, 489–513 (1999).
  14. S. G. Gathman, M. H. Smith, “On the nature of surf generated aerosol and their effect on electro-optical systems,” in Propagation and Imaging through the Atmosphere, L. R. Bisonnette, C. Dainty, eds., Proc. SPIE3125, 2–13 (1997). [CrossRef]
  15. G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, E. Vignati, “Sea spray aerosol production by waves breaking in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000). [CrossRef]
  16. A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” Tech. Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).
  17. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  18. G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
  19. E. Vignati, “Modelling interactions between aerosols and gaseous compounds in the polluted marine atmosphere,” Tech. Rep. Risø-R-1163(EN) (Risø National Laboratory, Copenhagen, 1999).
  20. L. T. Rogers, “Effects of variability of atmospheric refractivity on propagation estimates,” IEEE Trans. Antennas Propag. 44, 460–465 (1996). [CrossRef]
  21. G. de Leeuw, “Vertical profiles of giant particles close above the sea surface,” Tellus Ser. B 38, 51–61 (1986). [CrossRef]
  22. G. de Leeuw, C. W. Lamberts, “Influence of refractive index and particle size interval on Mie calculated backscatter and extinction,” J. Aerosol Sci. 18, 131–138 (1987). [CrossRef]
  23. F. E. Volz, “Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice, and fly ash,” Appl. Opt. 12, 564–568 (1973). [CrossRef] [PubMed]
  24. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effect of humidity variations on their optical properties,” Tech. Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1977).
  25. G. M. Hale, M. R. Query, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  26. G. de Leeuw, “North-Sea project II. Aerosol measurements aboard a ship and calculated optical and infrared properties of the marine atmosphere,” Tech. Rep. PHL 1983-11 (Physics Laboratory TNO, The Hague, The Netherlands, 1983).
  27. D. R. Jensen, R. Jeck, G. Trusty, G. Schacher, “Inter-comparison of Particle Measuring Systems, Inc.’s particle-size spectrometer,” Opt. Eng. 22, 746–752 (1983). [CrossRef]
  28. S. Hammel, “Sensitivity analysis for infrared propagation,” Tech. Rep. 2989 (Spawar Systems Center, San Diego, Calif, 1998), pp. 601–610.
  29. W. T. Liu, K. B. Katsaros, J. A. Businger, “Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface,” J. Atmos. Sci. 36, 1722–1735 (1979). [CrossRef]
  30. Y. A. Kravtsov, Y. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, New York, 1990). [CrossRef]
  31. Y. A. Kravtsov, Y. I. Orlov, Caustics, Catastrophes and Wave Fields (Springer, New York, 1998).
  32. Compare Ref. 11 and Figs. 5 and 6. The data for these two figures were obtained during our November 1996 experiment but have not been included in the present paper because they occurred during the power outage at the Imperial Beach Pier.
  33. C. R. Zeisse, “Grazing reflectivity of the wind-ruffled sea,” Tech. Rep. 1843 (Space and Naval Warfare Systems Center, San Diego, Calif., 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited