OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 18 — Jun. 20, 2002
  • pp: 3753–3762

Gas temperature measurements in weakly ionized glow discharges with filtered Rayleigh scattering

Azer P. Yalin, Yury Z. Ionikh, and Richard B. Miles  »View Author Affiliations

Applied Optics, Vol. 41, Issue 18, pp. 3753-3762 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (368 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first gas temperature measurements in plasmas to our knowledge obtained by filtered Rayleigh scattering (FRS). A narrow-linewidth Ti:sapphire laser is used as the illumination source, and a mercury filter provides strong suppression of elastic background. We perform measurements in weakly ionized glow discharges in pure argon and in an argon-plus-1%-nitrogen mixture. Where possible, we verify the FRS technique by comparing filtered measurements with unfiltered measurements. We present point measurements of axial temperature with uncertainties of less than 5%. We use a planar scheme to obtain radial temperature profiles with uncertainties of 10%.

© 2002 Optical Society of America

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(290.5870) Scattering : Scattering, Rayleigh
(300.0300) Spectroscopy : Spectroscopy
(350.2450) Other areas of optics : Filters, absorption
(350.5400) Other areas of optics : Plasmas

Original Manuscript: August 13, 2001
Revised Manuscript: January 11, 2002
Published: June 20, 2002

Azer P. Yalin, Yury Z. Ionikh, and Richard B. Miles, "Gas temperature measurements in weakly ionized glow discharges with filtered Rayleigh scattering," Appl. Opt. 41, 3753-3762 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1987).
  2. P. A. Voinovich, A. P. Ershov, S. E. Ponomareva, V. M. Shibkov, “Propagation of weak shock waves in plasma of longitudinal flow discharge in air,” High Temp. 29 (3), 468–475 (1991).
  3. B. N. Ganguly, P. Bletzinger, A. Garscadden, “Shock wave damping and dispersion in nonequilibrium low pressure argon plasmas,” Phys. Lett. A 230, 218–222 (1997). [CrossRef]
  4. A. R. White, V. V. Subramaniam, “Effect of wall shear on the propagation of a weak spark-generated shock wave in argon,” Phys. Fluids 13, 2441–2444 (2001). [CrossRef]
  5. Y. Z. Ionikh, N. V. Chernysheva, A. V. Meshchanov, A. P. Yalin, R. B. Miles, “Direct evidence for thermal mechanism of plasma influence on shock wave propagation,” Phys. Lett. A 259, 387–392 (1999). [CrossRef]
  6. M. Bruchhausen, J. Voigt, T. Doerk, S. Hadrich, J. Uhlenbusch, “Resonant coherent anti-Stokes Raman scattering applied to vapor phase InI,” J. Mol. Spectrosc. 201 (1), 70–82 (2000). [CrossRef]
  7. T. M. Yoshida, T. M. Jovin, B. G. Barisas, “Resonance coherent anti-Stokes Raman scattering in nitrogen-dioxide using a broadband dye-laser,” Opt. Eng. 34, 2631–2636 (1989).
  8. E. B. Cummings, “Laser-induced thermal acoustics—simple accurate gas measurements,” Opt. Lett. 19, 1361–1363 (1994). [CrossRef] [PubMed]
  9. P. F. Barker, J. H. Grinstead, R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168, 177–182 (1999). [CrossRef]
  10. J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering—a a laser based flow diagnostic for planar measurements of velocity, temperature, and pressure,” Ph.D. dissertation (Department of Mechanical Engineering and Aerospace, Princeton University, Princeton, N.J., (1996).
  11. D. Hoffman, K. U. Munch, A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996). [CrossRef] [PubMed]
  12. G. S. Elliot, N. Gluma, C. D. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–357 (1997). [CrossRef]
  13. M. W. Smith, G. B. Northam, J. P. Drummond, “Application of absorption filter planar Doppler velocimetry to sonic and supersonic jets,” AIAA J. 34 (3), 434–441 (1996). [CrossRef]
  14. G. S. Elliot, M. Samimy, S. A. Arnette, “A molecular based velocimetry technique for high speed flows,” Exp. Fluids 18, 107–118 (1994).
  15. A. P. Yalin, R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14 (2), 210–215 (1999).
  16. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Kent, UK, (1998).
  17. G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 54, 285–297 (1972).
  18. A. P. Yalin, “Gas phase and plasma diagnostics based on resonant atomic vapor filters,” Ph.D. dissertation (Department of Mechanical Engineering and Aerospace, Princeton University, Princeton, N.J., 2000).
  19. N. D. Finkelstein, “An ultraviolet laser source and spectral imaging filters for non-intrusive laser based diagnostics,” Ph.D. dissertation (Department of Mechanical Engineering and Aerospace, Princeton University, Princeton, N.J., 1998).
  20. A. P. Yalin, P. F. Barker, R. B. Miles, “Characterization of laser seeding by use of group-velocity dispersion in an atomic-vapor filter,” Opt. Lett. 25, 502–504 (2000). [CrossRef]
  21. C. K. Ni, A. H. Kung, “Effective suppression of amplified spontaneous emission by stimulated Brillouin scattering phase conjugation,” Opt. Lett. 21, 1673–1675 (1996). [CrossRef] [PubMed]
  22. L. P. Bakker, J. M. Freriks, F. J. de Hoog, G. M. W. Kroesen, “Thomson scattering using an atomic notch filter,” Rev. Sci. Instrum. 71, 2007–2014 (2000). [CrossRef]
  23. J. Kestin, K. Knierim, F. A. Mason, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13 (1), 229–303 (1984). [CrossRef]
  24. M. Capitelli, Nonequilibrium Vibrational Kinetics (Springer-Verlag, Berlin, 1986). [CrossRef]
  25. B. Yu. Golubovskii, R. Sonnenburg, “The positive column in an argon discharge,” Sov. Phys. Tech. Phys. 24 (2), 177–180 (1979).
  26. G. M. Petrov, C. M. Ferreira, “Numerical modeling of the constriction of the dc positive column in rare gases,” Phys. Rev. E 59, 3571–3582 (1999). [CrossRef]
  27. A. A. Matveev, V. P. Silakov, “Electron energy distribution function in a moderately ionized argon plasma,” Plasma Sources Sci. Technol. 10 (1), 134–146 (2001). [CrossRef]
  28. N. A. Dyatko, “Jumps and bi-stabilities in electron energy distribution in Ar-N2 post discharge plasma,” J. Phys. D 33, 2010–2018 (2000). [CrossRef]
  29. E. V. Karaulova, Yu. A. Lebedev, “Computer simulation of microwave and DC plasmas: comparative characterization of plasmas,” J. Phys. D 25 (3), 401–412 (1992).
  30. Y. B. Golubovskii, Y. M. Kagan, V. N. Rzhevskii, “Atomic temperature measurements in a positive discharge column for intermediate pressures in inert gases,” Opt. Spectrosc. 41,(5) 221–223 (1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited