OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 19 — Jul. 1, 2002
  • pp: 3827–3839

Quantitative Oximetry of Breast Tumors: A Near-Infrared Method that Identifies Two Optimal Wavelengths for Each Tumor

Erica L. Heffer and Sergio Fantini  »View Author Affiliations

Applied Optics, Vol. 41, Issue 19, pp. 3827-3839 (2002)

View Full Text Article

Acrobat PDF (396 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a noninvasive optical method to measure the oxygen saturation of hemoglobin in breast lesions. This method introduces the novel concept that the best choice of near-infrared wavelengths for noninvasive tumor oximetry consists of a wavelength pair (λ<sub>1</sub>, λ<sub>2</sub>) within the range 680–880 nm, where the specific values of λ<sub>1</sub> and λ<sub>2</sub> depend on the optical properties of the specific tumor under examination. Our method involves two steps: (1) identify the optimal wavelength pair for each tumor and (2) measure the tumor oxygenation using the optical data at the two selected wavelengths. We have tested our method by acquiring experimental optical data from turbid media containing cylindrical or irregularly shaped inhomogeneities and by computing theoretical data for the case of spherical lesions embedded in a highly scattering medium. We have found that our optical method can provide accurate and quantitative measurements of the oxygenation of embedded lesions without requiring knowledge of their size, shape, and depth.

© 2002 Optical Society of America

OCIS Codes
(110.7050) Imaging systems : Turbid media
(170.3830) Medical optics and biotechnology : Mammography
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media
(300.1030) Spectroscopy : Absorption

Erica L. Heffer and Sergio Fantini, "Quantitative Oximetry of Breast Tumors: A Near-Infrared Method that Identifies Two Optimal Wavelengths for Each Tumor," Appl. Opt. 41, 3827-3839 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. A. Wingo, T. Tong, and S. Bolden, “Cancer statistics, 1995,” CA Cancer J. Clin. 45, 8–30 (1995).
  2. J. G. Elmore, C. K. Wells, C. H. Lee, D. H. Howard, and A. R. Feinstein, “Variability in radiologists’ interpretation of mammograms,” N. Engl. J. Med. 331, 1493–1499 (1994).
  3. National Cancer Institute, “Understanding breast changes—a health guide for all women,” http://www.cancer.gov/cancer_information/doc_img.aspx?viewid=1cf1a0cb-cdfe-4e6e-8ad1–73bb376232aa (2001).
  4. Medical College of Wisconsin Physicians & Clinics, “MRI highly effective for breast cancer detection,” http://healthlink.mcw.edu/article/956629092.html (2000).
  5. Breast Thermography Physician’s Review, “A review of breast thermography,” http://www.breastthermography.com/infrared_imaging_review_mf.htm (2001).
  6. J. R. Keyserlingk, P. D. Ahlgren, E. Yu, and N. Belliveau, “Infrared imaging of the breast: initial reappraisal using high-resolution digital technology in 100 successive cases of stage I and stage II breast cancer,” Breast J. 4, 245–251 (1998).
  7. D. B. Kopans, “‘Early’ breast cancer detection using techniques other than mammography,” Am. J. Roentgenol. 143, 465–468 (1984).
  8. M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–727 (1929).
  9. C. M. Gros, Y. Quenneville, and Y. Hummel, “Diaphanologie mammaire,” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
  10. E. Carlsen, “Transillumination light scanning,” Diagn. Imaging 4, 28–34 (1982).
  11. E. A. Sickles, “Breast cancer detection with transillumination and mammography,” Am. J. Roentgenol. 142, 841–844 (1984).
  12. J. J. Gisvold, L. R. Brown, R. G. Swee, D. J. Raygor, N. Dickerson, and M. K. Ranfranz, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).
  13. A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, and D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
  14. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
  15. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 51, 4887–4891 (1994).
  16. S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994).
  17. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
  18. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, and E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
  19. J. B. Fishkin, S. Fantini, M. J. vandeVen, and E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
  20. M. R. Ostermeyer and S. L. Jacques, “Perturbation theory for diffuse light transport in complex biological tissues,” J. Opt. Soc. Am. A 14, 255–261 (1997).
  21. K. Wells, J. C. Hebden, F. E. W. Schmidt, and D. T. Delpy, “The UCL multichannel time-resolved system for optical tomography,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance and R. R. Alfano, eds., Proc. SPIE 2979, 599–607 (1997).
  22. V. Ntziachristos, X. H. Ma, and B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4223 (1998).
  23. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
  24. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammography and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
  25. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
  26. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge-effect corrections,” Med. Phys. 23, 149–157 (1996).
  27. S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, and B. Chance, “Phase array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance and R. R. Alfano, eds., Proc. SPIE 2979, 98–106 (1997).
  28. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
  29. B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.opticsexpress.org/issue.cfm?issue_id20.
  30. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
  31. Y. Yamashita and M. Kaneko, “Visible and infrared diaphanography for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, J. Beuthan, O. Minet, G. J. Mueller, and V. Praparat, eds., Vol. IS11 of the SPIE Institute Series(SPIE, Bellingham, Wash., 1993), pp. 283–316.
  32. J. H. Hoogenrad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, and E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, and M. Ferrari, eds., Proc. SPIE 3194, 184–190 (1998).
  33. R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, A. Zhong, S. S. Barbour, S. Blattman, and T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” Proceedings of the Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, 1999, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 161–166.
  34. P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
  35. P. Vaupel, K. Schlenger, C. Knoop, and M. Hockel, “Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancer by computerized O2 tension measurements,” Cancer Res. 51, 3316–3322 (1991).
  36. P. Hohenberger, C. Flegner, W. Haensch, and P. M. Schlag, “Tumor oxygenation correlates with molecular growth determinants in breast cancer,” Breast Cancer Res. Treat. 48, 97–106 (1998).
  37. P. Vaupel, D. K. Kelleher, and M. Hockel, “Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy,” Semin. Oncol. 28, 29–35 (2001).
  38. M. Hockel and P. Vaupel, “Biological consequences of tumor hypoxia,” Semin. Oncol. 28, 36–41 (2001).
  39. Q. Zhu, E. Conant, and B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
  40. M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
  41. B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
  42. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
  43. T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 1–11 (1999).
  44. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
  45. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
  46. V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951–953 (2000).
  47. S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
  48. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time-space and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
  49. H. Heusmann, J. Kölzer, and G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
  50. H. Heusmann, J. Kölzer, R. Puls, J. Otto, S. Heywang-Köbrunner, and W. Zinth, “Spectral transillumination of human breast tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance and R. R. Alfano, eds., Proc. SPIE 2389, 788–808 (1995).
  51. J. Kölzer, G. Mitic, J. Otto, and W. Zinth, “Measurements of the optical properties of breast tissue using time-resolved transillumination,” in Photon Transport in Highly Scattering Tissue, S. Arrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, and V. V. Tuchin, eds., Proc. SPIE 2326, 143–152 (1995).
  52. D. A. Boas, R. Gaudette, and T. Gaudette, PMI software, http://www.nmr.mgh.harvard.edu/DOT/resources/toolbox.htm.
  53. V. Quaresima, S. J. Matcher, and M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
  54. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
  55. S. Fantini, M. A. Franceschini, G. Gaida, H. Jess, H. Erdl, W. W. Mantulin, E. Gratton, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Contrast-enhancement by edge effect corrections in frequency-domain optical mammography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano and J. G. Fujimoto, eds., Vol. 2 of 1996 OSA Trends in Optics and Photonics Series(Optical Society of America, Washington, D.C., 1996), pp. 160–163.
  56. Q. Zhang, T. J. Brukilacchio, J. Stott, A. Li, and D. A. Boas, “Spectroscopic difference tomography for breast lesion detection,” Opt. Lett. (submitted for publication).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited