OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 19 — Jul. 1, 2002
  • pp: 3900–3905

Optical circulator for an in-line-type compact lidar

Tatsuo Shiina, Eiji Minami, Masafumi Ito, and Yasuyuki Okamura  »View Author Affiliations


Applied Optics, Vol. 41, Issue 19, pp. 3900-3905 (2002)
http://dx.doi.org/10.1364/AO.41.003900


View Full Text Article

Acrobat PDF (644 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The application of an optical circulator is demonstrated for an in-line-type lidar. The lidar's transmitter and receiver are installed in a telescope. The optical circulator of interest here can separate the transmitting laser beam and the echo lights on the same optical axis. It can also divide the echo lights simultaneously into orthogonally polarized components. An insertion loss of 2.2 dB and isolation of >60 dB for the developed optical circulator are obtained in a laser-transmitting situation. This optical circulator makes it possible to measure the polarization ratio caused by cloud phases with a narrow field of view in an in-line-type lidar operation.

© 2002 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(290.4210) Scattering : Multiple scattering

Citation
Tatsuo Shiina, Eiji Minami, Masafumi Ito, and Yasuyuki Okamura, "Optical circulator for an in-line-type compact lidar," Appl. Opt. 41, 3900-3905 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-19-3900


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
  2. S. R. Pal and A. I. Carswell, “Polarization properties of lidar backscattering from clouds,” Appl. Opt. 12, 1530–1535 (1973).
  3. J. S. Ryan, S. R. Pal, and A. I. Carswell, “Laser backscattering from dense water-droplet clouds,” J. Opt. Soc. Am. 69, 60–67 (1979).
  4. K. Sassen and R. L. Petrilla, “Lidar depolarization from multiple scattering in marine stratus clouds,” Appl. Opt. 25, 1450–1459 (1986).
  5. M. Kerscher, W. Krichbaumer, M. Noormohammadian, and U. G. Oppel, “Polarized multiply scattered lidar signals,” Opt. Rev. 2, 304–307 (1995).
  6. G. Zaccanti, P. Bruscaglioni, M. Gurioli, and P. Sansoni, “Laboratory simulations of lidar returns from clouds: experimental and numerical results,” Appl. Opt. 32, 1590–1597 (1993).
  7. P. Bruscaglioni, A. Ismaelli, G. Zaccanti, M. Gai, and M. Gurioli, “Polarization of lidar returns from water clouds: calculations and laboratory scaled measurements,” Opt. Rev. 2, 312–318 (1995).
  8. M Gai, M. Gurioli, P. Bruscaglioni, A. Ismaelli, and G. Zaccanti, “Laboratory simulations of lidar returns from clouds,” Appl. Opt. 35, 5435–5442 (1996).
  9. T. Halldorsson and J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
  10. N. Sugimoto, I. Matsui, and Y. Sasano, “Design of lidar transmitter-receiver optics for lower atmospheric observations: geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).
  11. C. J. Grund and S. P. Sandberg, “Depolarization and backscatter lidar for unattended operation,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wadinger, eds. (Springer Verlag, Berlin, 1997), pp. 3–6.
  12. H. S. Lee, I. H. Hwang, J. D. Spinhirne, and V. S. Scott, “Micropulse lidar for aerosol and cloud measurement,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wadinger, eds. (Springer Verlag, Berlin, 1997), pp. 7–10.
  13. P. C. Fletcher and D. L. Weisman, “Circulator for optical radar systems,” Appl. Opt. 4, 867–873 (1965).
  14. W. B. Ribbens, “An optical circulator,” Appl. Opt. 4, 1037–1038 (1965).
  15. J. F. Dillon, Jr., “Origin and uses of the Faraday rotation in magnetic crystals,” J. Appl. Phys. 39, 922–929 (1968).
  16. H. Iwamura, S. Hayashi, and H. Iwasaki, “A compact optical isolator using a Y3Fe5O12 crystal for near infrared radiation,” Opt. Quantum Electron. 10, 393–398 (1978).
  17. H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, and J. Noda, “Simple polarization-independent optical circulator for optical transmission systems,” Electron. Lett. 15, 830–831 (1979).
  18. M. Shirasaki, H. Kuwahara, and T. Obokata, “Compact polarization-independent optical circulator,” Appl. Opt. 20, 2683–2687 (1981).
  19. M. Koga and T. Matsumoto, “High-isolation polarization-insensitive optical circulator for advanced optical communication systems,” J. Lightwave Technol 10, 1210–1216 (1992).
  20. Y. Fuji, “High-isolation polarization-independent quasi-optical circulator,” J. Lightwave. Technol. 10, 1226–1229 (1992).
  21. Y. Fuji, “High-isolation polarization-insensitive N-port optical circulator,” Appl. Opt. 36, 1573–1575 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited