OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 19 — Jul. 1, 2002
  • pp: 3936–3940

Method for determining the optical axis and (n e , n o ) of a birefringent crystal

Der-Chin Su and Cheng-Chih Hsu  »View Author Affiliations


Applied Optics, Vol. 41, Issue 19, pp. 3936-3940 (2002)
http://dx.doi.org/10.1364/AO.41.003936


View Full Text Article

Enhanced HTML    Acrobat PDF (121 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There is a phase difference between s and p polarizations when a circularly polarized heterodyne light beam is reflected from a birefringent crystal. It can be measured accurately with a common-path heterodyne interferometric technique. We have derived an equation that describes the relationship between the phase differences and n e , n o , and α. Two groups of solutions for (n e , n o ) can be obtained from this equation by the phase measurements performed at three incident angles under moderate conditions. Each group consists of three pairs of solutions for (n e , n o ). Finally, by justifying with physical conditions, we obtained the correct solution for (n e , n o ). Azimuth angle α of the birefringent crystal optical axis can also be determined. And the feasibility of this method is demonstrated.

© 2002 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(260.1440) Physical optics : Birefringence

History
Original Manuscript: June 22, 2001
Revised Manuscript: December 4, 2001
Published: July 1, 2002

Citation
Der-Chin Su and Cheng-Chih Hsu, "Method for determining the optical axis and (ne, no) of a birefringent crystal," Appl. Opt. 41, 3936-3940 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-19-3936


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Wang, J. Yao, “Transmitted and tuning characteristics of birefringent filters,” Appl. Opt. 31, 4505–4508 (1992). [CrossRef] [PubMed]
  2. J. F. Valley, J. W. Wu, C. L. Valencia, “Heterodyne measurement of poling transient effects in electro-optic polymer thin films,” Appl. Phys. Lett. 57, 1084–1086 (1990). [CrossRef]
  3. I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998). [CrossRef]
  4. R. S. Weis, T. K. Gaylord, “Magnetooptic multilayered memory structure with a birefringent superstrate: a rigorous analysis,” Appl. Opt. 28, 1926–1930 (1989). [CrossRef] [PubMed]
  5. R. P. Shukla, G. M. Perera, M. C. George, P. Venkateswarlu, “Measurement of birefringence of optical materials using a wedged plate interferometer,” Opt. Commun. 78, 7–12 (1990). [CrossRef]
  6. M. H. Chiu, C. D. Chen, D. C. Su, “Method for determining the fast axis and phase retardation of a wave plate,” J. Opt. Soc. Am. A 13, 1924–1929 (1996). [CrossRef]
  7. Y. C. Huang, C. Chou, M. Chang, “Direct measurement of refractive indices of a linear birefringent retardation plate,” Opt. Commun. 133, 11–16 (1997). [CrossRef]
  8. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam1989), pp. 269–363.
  9. M. Schubert, B. Rheinlander, J. A. Woollam, B. Johs, C. M. Herzinger, “Extension of rotating-analyzer ellipsometry to generalized ellipsometry: determination of the dielectric function tensor from uniaxial TiO2,” J. Opt. Soc. Am. A 13, 875–883 (1996). [CrossRef]
  10. J. D. Hecht, A. Eifler, V. Riede, M. Schubert, G. Krauss, V. Kramer, “Birefringence and reflectivity of single-crystal CdAl2Se4 by generalized ellipsometry,” Phys. Rev. B 57, 7037–7042 (1998). [CrossRef]
  11. G. E. Jellison, F. A. Modine, L. A. Boatner, “Measurement of the optical functions of uniaxial materials by two-modulator generalized ellipsometry: rutile (TiO2),” Opt. Lett. 22, 1808–1810 (1997). [CrossRef]
  12. G. E. Jellison, F. A. Modine, “Two-modulator generalized ellipsometry: theory,” Appl. Opt. 36, 8190–8198 (1997). [CrossRef]
  13. G. E. Jellison, F. A. Modine, “Two-modulator generalized ellipsometry: experiment and calibration,” Appl. Opt. 36, 8184–8189 (1997). [CrossRef]
  14. J. Y. Lee, D. C. Su, “A method for measuring Brewster’s angle by circularly polarized heterodyne interferometry,” J. Opt. 29, 349–353 (1998). [CrossRef]
  15. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1991), pp. 232–239.
  16. R. M. A. Azzam, N. M. Bashara, “Application of generalized ellipsometry to anisotropic crystals,” J. Opt. Soc. Am. 64, 128–133 (1974). [CrossRef]
  17. R. L. Burden, J. D. Faires, Numerical Analysis, 5th ed. (PWS-Kent, Boston, Mass., 1993), pp. 553–560.
  18. E. D. Palik, ed., Handbook of Optical Constants of Solids III (Academic, New York, 1998), p. 708.
  19. Ref. 18, p. 729.
  20. M. H. Chiu, J. Y. Lee, D. C. Su, “Complex refractive-index measurement based on Fresnel’s equations and the uses of heterodyne interferometry,” Appl. Opt. 38, 4047–4052 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited