OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 19 — Jul. 1, 2002
  • pp: 3961–3965

Fabry-Perot-type antireflective coating for deep-ultraviolet binary photomask applications

Hsuen-Li Chen, Tieh-Chi Chu, Chien-Kui Hsu, Fu-Hsiang Ko, and Tiao-Yuan Huang  »View Author Affiliations


Applied Optics, Vol. 41, Issue 19, pp. 3961-3965 (2002)
http://dx.doi.org/10.1364/AO.41.003961


View Full Text Article

Enhanced HTML    Acrobat PDF (177 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an antireflective coating structure, which is based on the three-layer metal interference called the Fabry–Perot structure, for a deep-ultraviolet binary mask. The antireflective coating structure is composed of a metal–oxide–metal stack. By addition of different optimized structures, reflectances of less than 1.5% at both 248 and 193 nm have been achieved. At the three-layer Fabry–Perot structure, the bottom chrome layer provides suitable absorption. By controlling the thickness of the intermediate silicon oxide layer, we can tune the minimum-reflection regime to the desired exposure wavelength. The top metal layer can prevent charge accumulation during e-beam writing.

© 2002 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(310.1210) Thin films : Antireflection coatings
(310.1620) Thin films : Interference coatings
(310.1860) Thin films : Deposition and fabrication

History
Original Manuscript: June 25, 2001
Revised Manuscript: January 3, 2002
Published: July 1, 2002

Citation
Hsuen-Li Chen, Tieh-Chi Chu, Chien-Kui Hsu, Fu-Hsiang Ko, and Tiao-Yuan Huang, "Fabry-Perot-type antireflective coating for deep-ultraviolet binary photomask applications," Appl. Opt. 41, 3961-3965 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-19-3961


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Semiconductor Industry Association, International Technology Roadmap for Semiconductors, 1999 updated (SIA, 1999), http://public.itrs.net .
  2. L. N. Hadley, D. M. Dennison, “Reflection and transmission interference filters. I. Theory,” J. Opt. Soc. Am. 37451–465 (1947). [CrossRef]
  3. R. N. Schmidt, “Solar heat absorbers comprising alternate layers of metal and dielectric material,” U.S. patent3,272,986 (13September1966).
  4. J. A. Dobrowolski, F. C. Ho, A. Waldorf, “Research on thin film anticounterfeiting coatings at the National Research Council of Canada,” Appl. Opt. 28, 2702–2717 (1989). [CrossRef] [PubMed]
  5. R. W. Philips, A. F. Bleikolm, “Optical coatings for document security,” Appl. Opt. 35, 5529–5534 (1996). [CrossRef]
  6. K. Suzuki, S. Matsui, Y. Ochiai, Sub-Half-Micron Lithography for ULSI (Cambridge U. Press, Cambridge, UK, 2000).
  7. H. A. Macleod, Thin-Film Optical Filters (Macmillan, New York, 1986). [CrossRef]
  8. M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, “157nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999). [CrossRef]
  9. V. Liberman, T. M. Bloomstein, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, “Materials issues for optical components and photomasks in 157 nm lithography,” J. Vac. Sci. Technol. B 16, 3154–3157 (1998). [CrossRef]
  10. B. W. Smith, A. Bourov, L. Zavyalova, M. Cangemi, “Design and development of thin film materials for 157 nm and VUV wavelengths: APSM, binary masking, and optical coatings applications,” in Emerging Lithographic Technologies III, Y. Vladimirsky, ed., Proc. SPIE3676, 350–359 (1999). [CrossRef]
  11. P. F. Carcia, R. H. French, K. Sharp, J. S. Meth, B. W. Smith, “Materials screening for attenuating embedded phase-shift photoblanks for DUV and 193 nm photolithography,” Sixteenth Annual BACUS Symposium on Photomask Technology and Management, G. V. Shelden, J. A. Reynolds, ed., Proc. SPIE2884, 255–263 (1996). [CrossRef]
  12. T. C. Paulick, “Inversion of normal-incidence (R, T) measurements to obtain n + ik for thin films,” Appl. Opt. 25, 562–564 (1986). [CrossRef]
  13. A. R. Forouhi, I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 34, 1865–1874, (1988). [CrossRef]
  14. M. Born, E. Wolf, Principle of Optics (Pergamon, New York, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited