OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 19 — Jul. 1, 2002
  • pp: 3988–3998

Direct photolithographic deforming of organomodified siloxane films for micro-optics fabrication

Ari H. O. Kärkkäinen, John M. Tamkin, Jeremy D. Rogers, Daniel R. Neal, Osmo E. Hormi, Ghassan E. Jabbour, Juha T. Rantala, and Michael R. Descour  »View Author Affiliations

Applied Optics, Vol. 41, Issue 19, pp. 3988-3998 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (1999 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Direct photolithographic deforming of hybrid glass films is used to fabricate optical structures. The structure is fabricated in polyethylene-oxide-acrylate modified hybrid glass films with (1) binary and gray-scale photomasks using a mercury UV-lamp exposure and (2) maskless UV-laser patterning. Fabrication of isolated lenslets, lens arrays, and gratings is presented, including the associated exposure patterns. The hybrid glass material yields light-induced deformation peak-to-valley (p.v.) heights up to 12.8 µm with mercury UV-lamp exposure and p.v. deformation heights up to 6.8 µm with 365-nm UV-laser exposure. The fabricated lenslets’ surface data are presented as Zernike-polynomial fit coefficients. Material synthesis and processing-related aspects are examined to understand and control the material’s deformation under exposure. The hybrid glass material exhibits a maximum spectral extinction coefficient of 1.6 × 10-3 µm-1 at wavelengths ranging from 450 to 2200 nm and has a refractive index of 1.52 at 632.8 nm. The fabricated structures exhibit rms surface roughness between 1 and 5 nm.

© 2002 Optical Society of America

OCIS Codes
(110.5220) Imaging systems : Photolithography
(160.6060) Materials : Solgel
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3950) Other areas of optics : Micro-optics

Original Manuscript: July 17, 2001
Revised Manuscript: November 16, 2001
Published: July 1, 2002

Ari H. O. Kärkkäinen, John M. Tamkin, Jeremy D. Rogers, Daniel R. Neal, Osmo E. Hormi, Ghassan E. Jabbour, Juha T. Rantala, and Michael R. Descour, "Direct photolithographic deforming of organomodified siloxane films for micro-optics fabrication," Appl. Opt. 41, 3988-3998 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw Hill, New York, 1989).
  2. M. Eisner, J. Schwider, “Transferring resist lenses into silicon by RIE,” Opt. Eng. 10, 2979–2982 (1996). [CrossRef]
  3. E. J. Gratix, “Evolution of a microlens surface under etching conditions,” in Miniature and Micro-optics and Micromechanics, N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 266–274 (1993). [CrossRef]
  4. J. T. Rantala, P. Äyräs, R. Levy, S. Honkanen, M. R. Descour, N. Peyghambarian, “Binary-phase zone-plate arrays based on hybrid solgel glass,” Opt. Lett. 23, 1939–1941 (1998). [CrossRef]
  5. P. Äyräs, J. T. Rantala, R. Levy, M. R. Descour, S. Honkanen, N. Peyghambarian, “Multilevel structures in sol-gel thin films with a single UV-exposure using a gray-scale mask,” Thin Solid Films 352, 9–12 (1999). [CrossRef]
  6. J. T. Rantala, R. Levy, L. Kivimäki, M. R. Descour, “Direct UV patterning of thick hybrid glass films for micro-opto-mechanical structures,” Electron. Lett. 16, 530–531 (2000). [CrossRef]
  7. B. Darracq, F. Chaput, K. Lahlil, Y. Lévy, J.-P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998). [CrossRef]
  8. S. Pelissier, D. Blanc, M. P. Andrews, S. I. Najafi, A. V. Tishchenko, O. Parriaux, “Single-step UV recording of sinusoidal surface gratings in hybrid solgel glasses,” Appl. Opt. 38, 6744–6748 (1999). [CrossRef]
  9. J. T. Rantala, A. H. O. Kärkkäinen, J. A. Hiltunen, M. Keränen, T. Kololuoma, M. R. Descour, “UV light induced surface expansion phenomenon of hybrid glass thin films,”Opt. Express 8, 682–687 (2001), http://www.opticsexpress.org . [CrossRef] [PubMed]
  10. R. Sramek, F. Smektala, W. X. Xie, M. Douay, P. Niay, “Photoinduced surface expansion of fluorizirconate glasses,”J. Non-Cryst. Solids 277, 39–44 (2000), and references therein. [CrossRef]
  11. L. L. Hench, Sol-Gel Silica: Properties, Processing, and Technology Transfer (Noyes Publications, Park Ridge, N.J., 1998), pp.63–79, and references therein. [CrossRef]
  12. P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001). [CrossRef]
  13. S. Suzuki, Y. Todokoru, K. Komenou, “Process for the production of optical elements,” U.S. patent4,877,717 (24July1989).
  14. S. Sinzinger, J. Jahns, Microoptics (Wiley-VHC, Weinheim, 1999), pp.85–127, and references therein.
  15. T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998). [CrossRef]
  16. C. Fiorini, N. Prudhomme, G. de Veyrac, I. Maurin, P. Raimond, J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000). [CrossRef]
  17. M. Ornelas-Rodriquez, S. Calixto, “Direct laser writing of mid-infrared microelements on polyethylene material,” Opt. Eng. 40, 921–925 (2001). [CrossRef]
  18. M. Kufner, S. Kufner, Micro-Optics and Lithography (Vubpress, Brussels, 1997).
  19. D. M. Hartmann, O. Kibar, S. C. Esener, “Optimization and theoretical modeling of polymer microlens arrays fabricated with the hydrophobic effect,” Appl. Opt. 40, 2736–2746 (2001). [CrossRef]
  20. L. Lavielle, D.-J. Lougnot, “Self-organisation in dry photopolymerized acrylate films. 1. Irreversible thermodynamics analysis,” J. Photochem. Photobiol. A 102, 245–251 (1997). [CrossRef]
  21. L. Lavielle, C. Croutxé-Barghorn, E. Schuller, D. J. Lougnot, “Self-organisation in dry photopolymerized acrylate films. 2. General experimental description,” J. Photochem. Photobiol. A 104, 213–215 (1997). [CrossRef]
  22. R. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  23. ZEMAX is a product of Focus Software, Incorporated, Tucson, Arizona 85731, http://www.focus-software.com .
  24. J. M. Tamkin, J. P. Donahue, “High efficiency laser pattern generator,” U.S. patent6,084,706 (4July2000).
  25. K.-L. Yip, E. Muka, “MTF analysis and spot size selection for continuous-tone laser printers,” J. Imaging Sci. Technol. 15, 202–212 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited